These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24445318)

  • 1. Muscle contraction increases interstitial nitric oxide as predicted by a new model of local blood flow regulation.
    Golub AS; Song BK; Pittman RN
    J Physiol; 2014 Mar; 592(6):1225-35. PubMed ID: 24445318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bang-bang model for regulation of local blood flow.
    Golub AS; Pittman RN
    Microcirculation; 2013 Aug; 20(6):455-83. PubMed ID: 23441827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular matrix fibronectin mechanically couples skeletal muscle contraction with local vasodilation.
    Hocking DC; Titus PA; Sumagin R; Sarelius IH
    Circ Res; 2008 Feb; 102(3):372-9. PubMed ID: 18032733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of extraluminal ATP application on vascular tone and blood flow in skeletal muscle: implications for exercise hyperemia.
    Nyberg M; Al-Khazraji BK; Mortensen SP; Jackson DN; Ellis CG; Hellsten Y
    Am J Physiol Regul Integr Comp Physiol; 2013 Aug; 305(3):R281-90. PubMed ID: 23761642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid versus slow ascending vasodilatation: intercellular conduction versus flow-mediated signalling with tetanic versus rhythmic muscle contractions.
    Sinkler SY; Segal SS
    J Physiol; 2017 Dec; 595(23):7149-7165. PubMed ID: 28981145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen dependence of respiration in rat spinotrapezius muscle contracting at 0.5-8 twitches per second.
    Golub AS; Dodhy SC; Pittman RN
    J Appl Physiol (1985); 2018 Jul; 125(1):124-133. PubMed ID: 29494286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dilation of rat diaphragmatic arterioles by flow and hypoxia: roles of nitric oxide and prostaglandins.
    Ward ME
    J Appl Physiol (1985); 1999 May; 86(5):1644-50. PubMed ID: 10233130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of muscle metabolism and muscle blood flow in capillary units during contraction.
    Murrant CL; Sarelius IH
    Acta Physiol Scand; 2000 Apr; 168(4):531-41. PubMed ID: 10759590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interstitial and plasma adenosine stimulate nitric oxide and prostacyclin formation in human skeletal muscle.
    Nyberg M; Mortensen SP; Thaning P; Saltin B; Hellsten Y
    Hypertension; 2010 Dec; 56(6):1102-8. PubMed ID: 21041702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-fat diet-induced reduction in nitric oxide-dependent arteriolar dilation in rats: role of xanthine oxidase-derived superoxide anion.
    Erdei N; Tóth A; Pásztor ET; Papp Z; Edes I; Koller A; Bagi Z
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2107-15. PubMed ID: 16798827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear-dependent release of venular nitric oxide: effect on arteriolar tone in rat striated muscle.
    Boegehold MA
    Am J Physiol; 1996 Aug; 271(2 Pt 2):H387-95. PubMed ID: 8770074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADMA impairs nitric oxide-mediated arteriolar function due to increased superoxide production by angiotensin II-NAD(P)H oxidase pathway.
    Veresh Z; Racz A; Lotz G; Koller A
    Hypertension; 2008 Nov; 52(5):960-6. PubMed ID: 18838625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced arteriolar responses to skeletal muscle contraction after ingestion of a high salt diet.
    Marvar PJ; Nurkiewicz TR; Boegehold MA
    J Vasc Res; 2005; 42(3):226-36. PubMed ID: 15855795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise training enhances flow-induced vasodilation in skeletal muscle resistance arteries of aged rats: role of PGI2 and nitric oxide.
    Spier SA; Delp MD; Stallone JN; Dominguez JM; Muller-Delp JM
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H3119-27. PubMed ID: 17337602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sodium delivery on superoxide and nitric oxide in the medullary thick ascending limb.
    Abe M; O'Connor P; Kaldunski M; Liang M; Roman RJ; Cowley AW
    Am J Physiol Renal Physiol; 2006 Aug; 291(2):F350-7. PubMed ID: 16597609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiostatin: a negative regulator of endothelial-dependent vasodilation.
    Koshida R; Ou J; Matsunaga T; Chilian WM; Oldham KT; Ackerman AW; Pritchard KA
    Circulation; 2003 Feb; 107(6):803-6. PubMed ID: 12591747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microvascular dysfunction after transient high glucose is caused by superoxide-dependent reduction in the bioavailability of NO and BH(4).
    Bagi Z; Toth E; Koller A; Kaley G
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H626-33. PubMed ID: 15044190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuation of blood flow-induced dilation in arterioles after muscle contraction.
    Cábel M; Smiesko V; Johnson PC
    Am J Physiol; 1994 May; 266(5 Pt 2):H2114-21. PubMed ID: 8203610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of skeletal muscle blood flow during dynamic exercise: contribution of endothelium-derived nitric oxide.
    Green DJ; O'Driscoll G; Blanksby BA; Taylor RR
    Sports Med; 1996 Feb; 21(2):119-46. PubMed ID: 8775517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vasodilatation, oxygen delivery and oxygen consumption in rat hindlimb during systemic hypoxia: roles of nitric oxide.
    Edmunds NJ; Marshall JM
    J Physiol; 2001 Apr; 532(Pt 1):251-9. PubMed ID: 11283239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.