BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24445337)

  • 1. Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae.
    Ma YA; Cheng YM; Huang JW; Jen JF; Huang YS; Yu CC
    Bioprocess Biosyst Eng; 2014 Aug; 37(8):1543-9. PubMed ID: 24445337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct acid methylation for extraction of fatty acid content from microalgae cells.
    Frigo-Vaz BD; Wang P
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1581-6. PubMed ID: 24838798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative assessment of various lipid extraction protocols and optimization of transesterification process for microalgal biodiesel production.
    Mandal S; Patnaik R; Singh AK; Mallick N
    Environ Technol; 2013; 34(13-16):2009-18. PubMed ID: 24350454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound-enhanced and microwave-assisted extraction of lipid from Dunaliella tertiolecta and fatty acid profile analysis.
    Qv XY; Zhou QF; Jiang JG
    J Sep Sci; 2014 Oct; 37(20):2991-9. PubMed ID: 25143311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central composite design parameterization of microalgae/cyanobacteria co-culture pretreatment for enhanced lipid extraction using an external clamp-on ultrasonic transducer.
    Ellison CR; Overa S; Boldor D
    Ultrason Sonochem; 2019 Mar; 51():496-503. PubMed ID: 29793838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcritical n-hexane/isopropanol extraction of lipid from wet microalgal pastes of Scenedesmus obliquus.
    Bian X; Jin W; Gu Q; Zhou X; Xi Y; Tu R; Han SF; Xie GJ; Gao SH; Wang Q
    World J Microbiol Biotechnol; 2018 Feb; 34(3):39. PubMed ID: 29460187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study on effective cell disruption methods for lipid extraction from microalgae.
    Prabakaran P; Ravindran AD
    Lett Appl Microbiol; 2011 Aug; 53(2):150-4. PubMed ID: 21575021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using wet microalgae for direct biodiesel production via microwave irradiation.
    Cheng J; Yu T; Li T; Zhou J; Cen K
    Bioresour Technol; 2013 Mar; 131():531-5. PubMed ID: 23403061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient and scalable extraction and quantification method for algal derived biofuel.
    Lohman EJ; Gardner RD; Halverson L; Macur RE; Peyton BM; Gerlach R
    J Microbiol Methods; 2013 Sep; 94(3):235-44. PubMed ID: 23810969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic microstructures and fractal characterization of cell wall disruption for microwave irradiation-assisted lipid extraction from wet microalgae.
    Cheng J; Sun J; Huang Y; Feng J; Zhou J; Cen K
    Bioresour Technol; 2013 Dec; 150():67-72. PubMed ID: 24152788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production.
    Teo CL; Idris A
    Bioresour Technol; 2014 Nov; 171():477-81. PubMed ID: 25201293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid analysis of fatty acid profiles in raw nuts and seeds by microwave-ultrasonic synergistic in situ extraction-derivatisation and gas chromatography-mass spectrometry.
    Liu RL; Song SH; Wu M; He T; Zhang ZQ
    Food Chem; 2013 Dec; 141(4):4269-77. PubMed ID: 23993615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of Microalgal Lipid Content and Fatty Acid for Biofuel Production.
    Chen Z; Wang L; Qiu S; Ge S
    Biomed Res Int; 2018; 2018():1503126. PubMed ID: 29951526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of water content and cell disruption on lipid extraction using subcritical dimethyl ether in wet microalgae.
    Wang Q; Oshita K; Takaoka M; Shiota K
    Bioresour Technol; 2021 Jun; 329():124892. PubMed ID: 33676356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in betaine lipids and fatty acids between Pseudoisochrysis paradoxa VLP and Diacronema vlkianum VLP isolates (Haptophyta).
    Armada I; Hachero-Cruzado I; Mazuelos N; Ríos JL; Manchado M; Cañavate JP
    Phytochemistry; 2013 Nov; 95():224-33. PubMed ID: 23954077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical characterization of wet microalgal cells disrupted with instant catapult steam explosion for lipid extraction.
    Cheng J; Huang R; Li T; Zhou J; Cen K
    Bioresour Technol; 2015 Sep; 191():66-72. PubMed ID: 25983224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids.
    Biller P; Riley R; Ross AB
    Bioresour Technol; 2011 Apr; 102(7):4841-8. PubMed ID: 21295976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-assisted aqueous extraction of lipid from microalgae.
    Liang K; Zhang Q; Cong W
    J Agric Food Chem; 2012 Nov; 60(47):11771-6. PubMed ID: 23072503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-catalyzed hot-water extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101.
    Choi SA; Jung JY; Kim K; Lee JS; Kwon JH; Kim SW; Yang JW; Park JY
    Bioresour Technol; 2014 Jun; 161():469-72. PubMed ID: 24755396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microalgal cell disruption via ultrasonic nozzle spraying.
    Wang M; Yuan W
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1111-22. PubMed ID: 25369896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.