These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the effects of the human dura on macro- and micro-electrocorticographic recordings. Bundy DT; Zellmer E; Gaona CM; Sharma M; Szrama N; Hacker C; Freudenburg ZV; Daitch A; Moran DW; Leuthardt EC J Neural Eng; 2014 Feb; 11(1):016006. PubMed ID: 24654268 [TBL] [Abstract][Full Text] [Related]
5. Strategies for optical control and simultaneous electrical readout of extended cortical circuits. Ledochowitsch P; Yazdan-Shahmorad A; Bouchard KE; Diaz-Botia C; Hanson TL; He JW; Seybold BA; Olivero E; Phillips EA; Blanche TJ; Schreiner CE; Hasenstaub A; Chang EF; Sabes PN; Maharbiz MM J Neurosci Methods; 2015 Dec; 256():220-31. PubMed ID: 26296286 [TBL] [Abstract][Full Text] [Related]
6. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174 [TBL] [Abstract][Full Text] [Related]
7. Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull. Park AH; Lee SH; Lee C; Kim J; Lee HE; Paik SB; Lee KJ; Kim D ACS Nano; 2016 Feb; 10(2):2791-802. PubMed ID: 26735496 [TBL] [Abstract][Full Text] [Related]
8. Optogenetic field potential recording in cortical slices. Xiong W; Jin X J Neurosci Methods; 2012 Sep; 210(2):119-24. PubMed ID: 22884773 [TBL] [Abstract][Full Text] [Related]
9. Correlation Structure in Micro-ECoG Recordings is Described by Spatially Coherent Components. Rogers N; Hermiz J; Ganji M; Kaestner E; Kılıç K; Hossain L; Thunemann M; Cleary DR; Carter BS; Barba D; Devor A; Halgren E; Dayeh SA; Gilja V PLoS Comput Biol; 2019 Feb; 15(2):e1006769. PubMed ID: 30742605 [TBL] [Abstract][Full Text] [Related]
10. An electrocorticographic electrode array for simultaneous recording from medial, lateral, and intrasulcal surface of the cortex in macaque monkeys. Fukushima M; Saunders RC; Mullarkey M; Doyle AM; Mishkin M; Fujii N J Neurosci Methods; 2014 Aug; 233():155-65. PubMed ID: 24972186 [TBL] [Abstract][Full Text] [Related]
12. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes. Hara SA; Kim BJ; Kuo JT; Lee CD; Meng E; Pikov V J Neural Eng; 2016 Dec; 13(6):066020. PubMed ID: 27819256 [TBL] [Abstract][Full Text] [Related]
13. Localization of deep brain activity with scalp and subdural EEG. Fahimi Hnazaee M; Wittevrongel B; Khachatryan E; Libert A; Carrette E; Dauwe I; Meurs A; Boon P; Van Roost D; Van Hulle MM Neuroimage; 2020 Dec; 223():117344. PubMed ID: 32898677 [TBL] [Abstract][Full Text] [Related]
14. Microscale recording from human motor cortex: implications for minimally invasive electrocorticographic brain-computer interfaces. Leuthardt EC; Freudenberg Z; Bundy D; Roland J Neurosurg Focus; 2009 Jul; 27(1):E10. PubMed ID: 19569885 [TBL] [Abstract][Full Text] [Related]
15. Electrocorticogram (ECoG) Is Highly Informative in Primate Visual Cortex. Kanth ST; Ray S J Neurosci; 2020 Mar; 40(12):2430-2444. PubMed ID: 32066581 [TBL] [Abstract][Full Text] [Related]
16. Long-Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core-Shell Nanowires. Araki T; Yoshida F; Uemura T; Noda Y; Yoshimoto S; Kaiju T; Suzuki T; Hamanaka H; Baba K; Hayakawa H; Yabumoto T; Mochizuki H; Kobayashi S; Tanaka M; Hirata M; Sekitani T Adv Healthc Mater; 2019 May; 8(10):e1900130. PubMed ID: 30946540 [TBL] [Abstract][Full Text] [Related]
17. Patterned optogenetic modulation of neurovascular and metabolic signals. Richner TJ; Baumgartner R; Brodnick SK; Azimipour M; Krugner-Higby LA; Eliceiri KW; Williams JC; Pashaie R J Cereb Blood Flow Metab; 2015 Jan; 35(1):140-7. PubMed ID: 25388678 [TBL] [Abstract][Full Text] [Related]
18. A cortical recording platform utilizing microECoG electrode arrays. Kim J; Wilson JA; Williams JC Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5353-7. PubMed ID: 18003217 [TBL] [Abstract][Full Text] [Related]
19. An online brain-machine interface using decoding of movement direction from the human electrocorticogram. Milekovic T; Fischer J; Pistohl T; Ruescher J; Schulze-Bonhage A; Aertsen A; Rickert J; Ball T; Mehring C J Neural Eng; 2012 Aug; 9(4):046003. PubMed ID: 22713666 [TBL] [Abstract][Full Text] [Related]
20. Decoding movement-related cortical potentials from electrocorticography. Reddy CG; Reddy GG; Kawasaki H; Oya H; Miller LE; Howard MA Neurosurg Focus; 2009 Jul; 27(1):E11. PubMed ID: 19569886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]