These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 24445536)

  • 1. Human movement analysis as a measure for fatigue: a hidden Markov-based approach.
    Karg M; Venture G; Hoey J; Kulić D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):470-81. PubMed ID: 24445536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying kinematic differences between land and water during squats, split squats, and single-leg squats in a healthy population.
    Severin AC; Burkett BJ; McKean MR; Wiegand AN; Sayers MGL
    PLoS One; 2017; 12(8):e0182320. PubMed ID: 28767683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posture-movement responses to stance perturbations and upper limb fatigue during a repetitive pointing task.
    Fuller JR; Fung J; Côté JN
    Hum Mov Sci; 2013 Aug; 32(4):618-32. PubMed ID: 24054899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of fatigue on movement variability.
    Cortes N; Onate J; Morrison S
    Gait Posture; 2014 Mar; 39(3):888-93. PubMed ID: 24370441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of muscle fatigue on rapid finger oscillations.
    Heuer H; Schulna R; Luttmann A
    Exp Brain Res; 2002 Nov; 147(1):124-34. PubMed ID: 12373377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of stretch shortening cycle exercise fatigue on stress fracture injury risk during landing.
    James CR; Dufek JS; Bates BT
    Res Q Exerc Sport; 2006 Mar; 77(1):1-13. PubMed ID: 16646347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An EMG-driven biomechanical model that accounts for the decrease in moment generation capacity during a dynamic fatigued condition.
    Rao G; Berton E; Amarantini D; Vigouroux L; Buchanan TS
    J Biomech Eng; 2010 Jul; 132(7):071003. PubMed ID: 20590281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue-related changes in stance leg mechanics during sidestep cutting maneuvers.
    Sanna G; O'Connor KM
    Clin Biomech (Bristol); 2008 Aug; 23(7):946-54. PubMed ID: 18468745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of a symbolic motion structure representation algorithm to identify upper extremity kinematic changes during a repetitive task.
    Whittaker RL; Park W; Dickerson CR
    J Biomech; 2018 Apr; 72():235-240. PubMed ID: 29523349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical manifestations of muscle fatigue during concentric and eccentric isokinetic knee flexion-extension movements.
    Molinari F; Knaflitz M; Bonato P; Actis MV
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1309-16. PubMed ID: 16830935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle fatigue and fatigue-related biomechanical changes during a cyclic lifting task.
    Bonato P; Ebenbichler GR; Roy SH; Lehr S; Posch M; Kollmitzer J; Della Croce U
    Spine (Phila Pa 1976); 2003 Aug; 28(16):1810-20. PubMed ID: 12923468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of two neuromuscular fatigue protocols on landing performance.
    James CR; Scheuermann BW; Smith MP
    J Electromyogr Kinesiol; 2010 Aug; 20(4):667-75. PubMed ID: 20006522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.
    Augustsson J; Thomeé R; Lindén C; Folkesson M; Tranberg R; Karlsson J
    Scand J Med Sci Sports; 2006 Apr; 16(2):111-20. PubMed ID: 16533349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of active fatiguing movement versus passive repetitive movement on knee proprioception.
    Ju YY; Wang CW; Cheng HY
    Clin Biomech (Bristol); 2010 Aug; 25(7):708-12. PubMed ID: 20621754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse Dynamics for Action Recognition.
    Mansur A; Makihara Y; Yagi Y
    IEEE Trans Cybern; 2013 Aug; 43(4):1226-36. PubMed ID: 26502432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time estimate of body kinematics during a planar squat task using a single inertial measurement unit.
    Bonnet V; Mazzà C; Fraisse P; Cappozzo A
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1920-6. PubMed ID: 23392337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting changes in motion characteristics during sports training.
    Kulić D; Venture G; Nakamura Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4011-4. PubMed ID: 19964093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of muscle fatigue during biking.
    Knaflitz M; Molinari F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):17-23. PubMed ID: 12797721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Data-Driven Approach to Predict Fatigue in Exercise Based on Motion Data from Wearable Sensors or Force Plate.
    Jiang Y; Hernandez V; Venture G; Kulić D; K Chen B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of muscle fatigue and physical activity level in motor control of the gait of young adults.
    Barbieri FA; dos Santos PC; Vitório R; van Dieën JH; Gobbi LT
    Gait Posture; 2013 Sep; 38(4):702-7. PubMed ID: 23557595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.