These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 2444579)
1. A possible role of protein phosphorylation in the inactivation of a Ca2+-induced Ca2+ release channel from skeletal muscle sarcoplasmic reticulum. Morii H; Takisawa H; Yamamoto T J Biochem; 1987 Aug; 102(2):263-71. PubMed ID: 2444579 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of a Ca2+-induced Ca2+ release channel from skeletal muscle sarcoplasmic reticulum during active Ca2+ transport. Morii H; Takisawa H; Yamamoto T J Biol Chem; 1985 Sep; 260(21):11536-41. PubMed ID: 2413013 [TBL] [Abstract][Full Text] [Related]
3. Pathways of calcium release from heavy sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle. Rubtsov AM; Quinn PJ; Boldyrev AA FEBS Lett; 1988 Oct; 238(2):240-4. PubMed ID: 2458967 [TBL] [Abstract][Full Text] [Related]
4. Silver ions trigger Ca2+ release by acting at the apparent physiological release site in sarcoplasmic reticulum. Salama G; Abramson J J Biol Chem; 1984 Nov; 259(21):13363-9. PubMed ID: 6208194 [TBL] [Abstract][Full Text] [Related]
5. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on Ca2+ binding and Ca2+ permeability. Goeger DE; Riley RT Biochem Pharmacol; 1989 Nov; 38(22):3995-4003. PubMed ID: 2532015 [TBL] [Abstract][Full Text] [Related]
6. Divergent effects of ruthenium red and ryanodine on Ca2+/calmodulin-dependent phosphorylation of the Ca2+ release channel (ryanodine receptor) in cardiac sarcoplasmic reticulum. Netticadan T; Xu A; Narayanan N Arch Biochem Biophys; 1996 Sep; 333(2):368-76. PubMed ID: 8809075 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of longitudinal tubules of sarcoplasmic reticulum from fast skeletal muscle. Chu A; Saito A; Fleischer S Arch Biochem Biophys; 1987 Oct; 258(1):13-23. PubMed ID: 2444161 [TBL] [Abstract][Full Text] [Related]
8. [Calcium release from vesicles of heavy sarcoplasmic reticulum of rabbit skeletal muscles]. Smirnova MB; Rubtsov AM; Boldyrev AA Ukr Biokhim Zh (1978); 1989; 61(1):57-64. PubMed ID: 2472698 [TBL] [Abstract][Full Text] [Related]
9. Ruthenium red and caffeine affect the Ca2+-ATPase of the sarcoplasmic reticulum. Mészáros LG; Ikemoto N Biochem Biophys Res Commun; 1985 Mar; 127(3):836-42. PubMed ID: 2580520 [TBL] [Abstract][Full Text] [Related]
10. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. Meissner G; Henderson JS J Biol Chem; 1987 Mar; 262(7):3065-73. PubMed ID: 2434495 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Martonosi AN Physiol Rev; 1984 Oct; 64(4):1240-320. PubMed ID: 6093162 [TBL] [Abstract][Full Text] [Related]
12. Nucleotide triphosphate utilization by cardiac and skeletal muscle sarcoplasmic reticulum. Further evidence for an alternative substrate hydrolysis cycle and the effect of calcium NTPase purification. Bick RJ; Van Winkle WB; Tate CA; Entman ML J Biol Chem; 1983 Apr; 258(7):4447-52. PubMed ID: 6300087 [TBL] [Abstract][Full Text] [Related]
13. Gingerol, a novel cardiotonic agent, activates the Ca2+-pumping ATPase in skeletal and cardiac sarcoplasmic reticulum. Kobayashi M; Shoji N; Ohizumi Y Biochim Biophys Acta; 1987 Sep; 903(1):96-102. PubMed ID: 2443170 [TBL] [Abstract][Full Text] [Related]
14. Calcium pool size modulates the sensitivity of the ryanodine receptor channel and calcium-dependent ATPase of heavy sarcoplasmic reticulum to extravesicular free calcium concentration. Marie V; Silva JE J Cell Physiol; 1998 Jun; 175(3):283-94. PubMed ID: 9572473 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of calcium release from skeletal muscle sarcoplasmic reticulum by calmodulin. Plank B; Wyskovsky W; Hohenegger M; Hellmann G; Suko J Biochim Biophys Acta; 1988 Feb; 938(1):79-88. PubMed ID: 3337818 [TBL] [Abstract][Full Text] [Related]
16. Doxorubicin induces calcium release from terminal cisternae of skeletal muscle. A study on isolated sarcoplasmic reticulum and chemically skinned fibers. Zorzato F; Salviati G; Facchinetti T; Volpe P J Biol Chem; 1985 Jun; 260(12):7349-55. PubMed ID: 2581966 [TBL] [Abstract][Full Text] [Related]
17. Ontogeny of sarcoplasmic reticulum protein phosphorylation by Ca2+--calmodulin-dependent protein kinase. Xu A; Hawkins C; Narayanan N J Mol Cell Cardiol; 1997 Jan; 29(1):405-18. PubMed ID: 9040054 [TBL] [Abstract][Full Text] [Related]
18. Ca2+/calmodulin-dependent phosphorylation of the Ca2+-ATPase, uncoupled from phospholamban, stimulates Ca2+-pumping in native cardiac sarcoplasmic reticulum. Xu A; Narayanan N Biochem Biophys Res Commun; 1999 Apr; 258(1):66-72. PubMed ID: 10222236 [TBL] [Abstract][Full Text] [Related]
19. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+. Smith JS; Coronado R; Meissner G J Gen Physiol; 1986 Nov; 88(5):573-88. PubMed ID: 2431098 [TBL] [Abstract][Full Text] [Related]
20. Effect of the calcium-channel blockers on calcium accumulation in sarcoplasmic reticulum of skeletal muscle. Fernández-Belda F; Gómez-Fernández JC Biochim Biophys Acta; 1987 Oct; 903(3):473-9. PubMed ID: 2444258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]