These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 2444597)
1. The significance of colloid osmotic pressure during induced hypothermia. Haneda K; Thomas R; Breazeale DG; Dillard DH J Cardiovasc Surg (Torino); 1987; 28(6):614-20. PubMed ID: 2444597 [TBL] [Abstract][Full Text] [Related]
2. Circulatory dynamics during surface-induced hypothermia under halothane-ether azeotrope anesthesia. Haneda K; Sands MP; Thomas R; Merrick SH; Hessel EA; Dillard DH Ann Thorac Surg; 1982 Mar; 33(3):258-66. PubMed ID: 6803689 [TBL] [Abstract][Full Text] [Related]
3. The importance of appropriate concentrations of inspired carbon dioxide on induced hypothermia under halothane-ether azeotrope anesthesia. Haneda K; Thomas R; Breazeale DG; Sands MP; Dillard DH J Cardiovasc Surg (Torino); 1984; 25(1):67-74. PubMed ID: 6423647 [TBL] [Abstract][Full Text] [Related]
4. Blood anesthetic levels during surface-induced deep hypothermia under halothane-diethyl ether azeotrope anesthesia. Itoh T; Thomas R; Foltz BD; Dillard DH Tohoku J Exp Med; 1986 Jan; 148(1):103-11. PubMed ID: 3705059 [TBL] [Abstract][Full Text] [Related]
5. Influence of ethanol on circulation in surface-induced hypothermia and subsequent rewarming. Lauri T; Timisjärvi J; Saukko P Alcohol; 1996; 13(2):117-23. PubMed ID: 8814644 [TBL] [Abstract][Full Text] [Related]
6. N-acetylcysteine reduces lung reperfusion injury after deep hypothermia and total circulatory arrest. Cakir O; Oruc A; Kaya S; Eren N; Yildiz F; Erdinc L J Card Surg; 2004; 19(3):221-5. PubMed ID: 15151648 [TBL] [Abstract][Full Text] [Related]
7. Profound hypothermia (less than 10 degrees C) compared with deep hypothermia (15 degrees C) improves neurologic outcome in dogs after two hours' circulatory arrest induced to enable resuscitative surgery. Tisherman SA; Safar P; Radovsky A; Peitzman A; Marrone G; Kuboyama K; Weinrauch V J Trauma; 1991 Aug; 31(8):1051-61; discussion 1061-2. PubMed ID: 1875431 [TBL] [Abstract][Full Text] [Related]
8. Blood flow distribution in infant pigs subjected to surface cooling, deep hypothermia, and circulatory arrest. Deleterious effects in pigs with left-to-right shunts. Mavroudis C; Brown GL; Katzmark SL; Howe WR; Gray LA J Thorac Cardiovasc Surg; 1984 May; 87(5):665-72. PubMed ID: 6201681 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of alpha-stat and pH-stat strategies with a membrane oxygenator during deep hypothermic circulatory arrest in young pigs. Kim WG; Lim C; Moon HJ; Kim YJ Artif Organs; 2000 Nov; 24(11):908-12. PubMed ID: 11119081 [TBL] [Abstract][Full Text] [Related]
10. Whole body protection during three hours of total circulatory arrest: an experimental study. Haneda K; Thomas R; Sands MP; Breazeale DG; Dillard DH Cryobiology; 1986 Dec; 23(6):483-94. PubMed ID: 3802887 [TBL] [Abstract][Full Text] [Related]
11. Effect of nonprotein colloid on postburn edema formation in soft tissues and lung. Demling RH; Kramer GC; Gunther R; Nerlich M Surgery; 1984 May; 95(5):593-602. PubMed ID: 6200946 [TBL] [Abstract][Full Text] [Related]
12. Lidocaine prolongs the safe duration of circulatory arrest during deep hypothermia in dogs. Zhou Y; Wang D; Du M; Zhu J; Shan G; Ma D; Xie D; Ma Q; Hu X; Li J Can J Anaesth; 1998 Jul; 45(7):692-8. PubMed ID: 9717604 [TBL] [Abstract][Full Text] [Related]
13. Total body washout (tbw) and circulatory arrest in profound hypothermia. Jesch F; Sunder-Plassmann L; Pohl U; Messmer K Bibl Haematol; 1975; (41):209-24. PubMed ID: 241317 [No Abstract] [Full Text] [Related]
14. Improved anesthesia for deep surface-induced hypothermia: the halothane-diethyl ether azeotrope. Sands MP; Dillard DH; Hessel EA; Miller DW Ann Thorac Surg; 1980 Feb; 29(2):123-9. PubMed ID: 7356362 [TBL] [Abstract][Full Text] [Related]
15. [The change of colloid osmotic pressure (COP) during simple deep hypothermia]. Shimoda Y; Kawamura T; Okada K Masui; 1989 Sep; 38(9):1148-60. PubMed ID: 2810711 [TBL] [Abstract][Full Text] [Related]
16. Advantages of hypothermic potassium cardioplegia and superiority of continuous versus intermittent aortic cross-clamping. Roberts AJ; Abel RM; Alonso DR; Subramanian VA; Paul JS; Gay WA J Thorac Cardiovasc Surg; 1980 Jan; 79(1):44-58. PubMed ID: 7350388 [TBL] [Abstract][Full Text] [Related]
17. [Total blood exchange with circulatory arrest in deep hypothermia]. Jesch F; Sunder-Plassmann L; Pohl U; Messmer K Langenbecks Arch Chir; 1975; Suppl():405-9. PubMed ID: 1207269 [TBL] [Abstract][Full Text] [Related]
18. Blood gas management and degree of cooling: effects on cerebral metabolism before and after circulatory arrest. Skaryak LA; Chai PJ; Kern FH; Greeley WJ; Ungerleider RM J Thorac Cardiovasc Surg; 1995 Dec; 110(6):1649-57. PubMed ID: 8523875 [TBL] [Abstract][Full Text] [Related]
19. Effects of sympathetic stimulation during cooling on hypothermic as well as posthypothermic hemodynamic function. Kondratiev TV; Tveita T Can J Physiol Pharmacol; 2006 Oct; 84(10):985-91. PubMed ID: 17218964 [TBL] [Abstract][Full Text] [Related]
20. Pulsatile perfusion versus conventional high-flow nonpulsatile perfusion for rapid core cooling and rewarming of infants for circulatory arrest in cardiac operation. Williams GD; Seifen AB; Lawson NW; Norton JB; Readinger RI; Dungan TW; Callaway JK; Campbell GS J Thorac Cardiovasc Surg; 1979 Nov; 78(5):667-77. PubMed ID: 491721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]