BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24446017)

  • 1. Determination of chemical affinity of graphene oxide nanosheets with radionuclides investigated by macroscopic, spectroscopic and modeling techniques.
    Ding C; Cheng W; Sun Y; Wang X
    Dalton Trans; 2014 Mar; 43(10):3888-96. PubMed ID: 24446017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline.
    Sun Y; Shao D; Chen C; Yang S; Wang X
    Environ Sci Technol; 2013 Sep; 47(17):9904-10. PubMed ID: 23902375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides.
    Song W; Wang X; Wang Q; Shao D; Wang X
    Phys Chem Chem Phys; 2015 Jan; 17(1):398-406. PubMed ID: 25407696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of core-shell structure Fe
    Dai S; Wang N; Qi C; Wang X; Ma Y; Yang L; Liu X; Huang Q; Nie C; Hu B; Wang X
    Sci Total Environ; 2019 Oct; 685():986-996. PubMed ID: 31390716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions.
    Zhao G; Wen T; Yang X; Yang S; Liao J; Hu J; Shao D; Wang X
    Dalton Trans; 2012 May; 41(20):6182-8. PubMed ID: 22473651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroscopic and Microscopic Investigation of U(VI) and Eu(III) Adsorption on Carbonaceous Nanofibers.
    Sun Y; Wu ZY; Wang X; Ding C; Cheng W; Yu SH; Wang X
    Environ Sci Technol; 2016 Apr; 50(8):4459-67. PubMed ID: 26998856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Complexation Modeling of Eu(III) and U(VI) Interactions with Graphene Oxide.
    Xie Y; Helvenston EM; Shuller-Nickles LC; Powell BA
    Environ Sci Technol; 2016 Feb; 50(4):1821-7. PubMed ID: 26752242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques.
    Sun Y; Wang Q; Chen C; Tan X; Wang X
    Environ Sci Technol; 2012 Jun; 46(11):6020-7. PubMed ID: 22550973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets.
    Zhang P; Wang L; Du K; Wang S; Huang Z; Yuan L; Li Z; Wang H; Zheng L; Chai Z; Shi W
    J Hazard Mater; 2020 Sep; 396():122731. PubMed ID: 32339877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxylated UiO-66 Tailored for U(VI) and Eu(III) Trapping: From Batch Adsorption to Dynamic Column Separation.
    Zhao B; Yuan L; Wang Y; Duan T; Shi W
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16300-16308. PubMed ID: 33788533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decontamination of U(VI) on graphene oxide/Al
    Zhang L; Li Y; Guo H; Zhang H; Zhang N; Hayat T; Sun Y
    Environ Pollut; 2019 May; 248():332-338. PubMed ID: 30802747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite.
    Chen S; Hong J; Yang H; Yang J
    J Environ Radioact; 2013 Dec; 126():253-8. PubMed ID: 24090965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of Paecilomyces catenlannulatus on removal of U(VI) by illite.
    Li F; Gao Z; Li X; Fang L
    J Environ Radioact; 2014 Nov; 137():31-36. PubMed ID: 24998746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study.
    Sun Y; Yang S; Chen Y; Ding C; Cheng W; Wang X
    Environ Sci Technol; 2015 Apr; 49(7):4255-62. PubMed ID: 25761122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutual effects of U(VI) and Eu(III) immobilization on interpenetrating 3-dimensional MnO
    Ma J; Zhao Q; Zhou L; Wen T; Wang J
    Sci Total Environ; 2019 Dec; 695():133696. PubMed ID: 31421337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K
    Zhu M; Cai Y; Liu S; Fang M; Tan X; Liu X; Kong M; Xu W; Mei H; Hayat T
    Environ Pollut; 2019 May; 248():448-455. PubMed ID: 30826607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical investigation of U(VI) on pyrrhotite by batch, EXAFS and modeling techniques.
    Liu H; Zhu Y; Xu B; Li P; Sun Y; Chen T
    J Hazard Mater; 2017 Jan; 322(Pt B):488-498. PubMed ID: 27776872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between U(VI) with sulfhydryl groups functionalized graphene oxides investigated by batch and spectroscopic techniques.
    Zhao D; Gao X; Chen S; Xie F; Feng S; Alsaedi A; Hayat T; Chen C
    J Colloid Interface Sci; 2018 Aug; 524():129-138. PubMed ID: 29635086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear Free Energy Relationship for Actinide Sorption to Graphene Oxide.
    Xie Y; Powell BA
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32086-32092. PubMed ID: 30160935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust Model for Prediction of U(VI) Adsorption onto Ferrihydrite Consistent with Spectroscopic Observations.
    Kobayashi Y; Fukushi K; Kosugi S
    Environ Sci Technol; 2020 Feb; 54(4):2304-2313. PubMed ID: 31887032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.