BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 24446093)

  • 1. Changing climate and the altitudinal range of avian malaria in the Hawaiian Islands - an ongoing conservation crisis on the island of Kaua'i.
    Atkinson CT; Utzurrum RB; Lapointe DA; Camp RJ; Crampton LH; Foster JT; Giambelluca TW
    Glob Chang Biol; 2014 Aug; 20(8):2426-36. PubMed ID: 24446093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai'i.
    LaPointe DA; Goff ML; Atkinson CT
    J Parasitol; 2010 Apr; 96(2):318-24. PubMed ID: 20001096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevalence and distribution of pox-like lesions, avian malaria, and mosquito vectors in Kipahulu Valley, Haleakala National Park, Hawai'i, USA.
    Aruch S; Atkinson CT; Savage AF; Lapointe DA
    J Wildl Dis; 2007 Oct; 43(4):567-75. PubMed ID: 17984251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local prevalence and transmission of avian malaria in the Alakai Plateau of Kauai, Hawaii, U.S.A.
    Glad A; Crampton LH
    J Vector Ecol; 2015 Dec; 40(2):221-9. PubMed ID: 26611954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitigating Future Avian Malaria Threats to Hawaiian Forest Birds from Climate Change.
    Liao W; Atkinson CT; LaPointe DA; Samuel MD
    PLoS One; 2017; 12(1):e0168880. PubMed ID: 28060848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawai'i using the incompatible insect technique.
    Vorsino AE; Xi Z
    Parasit Vectors; 2022 Dec; 15(1):453. PubMed ID: 36471389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High resolution lidar data shed light on inter-island translocation of endangered bird species in the Hawaiian Islands.
    Gallerani EM; Burgett J; Vaughn N; Berio Fortini L; Fricker GA; Mounce H; Gillespie TW; Crampton L; Knapp D; Hite JM; Gilb R
    Ecol Appl; 2023 Jul; 33(5):e2889. PubMed ID: 37212375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evidence for evolved tolerance to avian malaria in a wild population of low elevation Hawai'i 'Amakihi (Hemignathus virens).
    Atkinson CT; Saili KS; Utzurrum RB; Jarvi SI
    Ecohealth; 2013 Dec; 10(4):366-75. PubMed ID: 24430825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Will a warmer and wetter future cause extinction of native Hawaiian forest birds?
    Liao W; Elison Timm O; Zhang C; Atkinson CT; LaPointe DA; Samuel MD
    Glob Chang Biol; 2015 Dec; 21(12):4342-52. PubMed ID: 26111019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogenicity of avian malaria in experimentally-infected Hawaii Amakihi.
    Atkinson CT; Dusek RJ; Woods KL; Iko WM
    J Wildl Dis; 2000 Apr; 36(2):197-204. PubMed ID: 10813599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative susceptibility of introduced forest-dwelling mosquitoes in Hawai'i to avian malaria, Plasmodium relictum.
    LaPointe DA; Goff ML; Atkinson CT
    J Parasitol; 2005 Aug; 91(4):843-9. PubMed ID: 17089752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecology and conservation biology of avian malaria.
    Lapointe DA; Atkinson CT; Samuel MD
    Ann N Y Acad Sci; 2012 Feb; 1249():211-26. PubMed ID: 22320256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete sporogony of Plasmodium relictum (lineages pSGS1 and pGRW11) in mosquito Culex pipiens pipiens form molestus, with implications to avian malaria epidemiology.
    Žiegytė R; Bernotienė R; Bukauskaitė D; Palinauskas V; Iezhova T; Valkiūnas G
    J Parasitol; 2014 Dec; 100(6):878-82. PubMed ID: 24979183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the potential of translocating vulnerable forest birds by searching for novel and enduring climatic ranges.
    Fortini LB; Kaiser LR; Vorsino AE; Paxton EH; Jacobi JD
    Ecol Evol; 2017 Nov; 7(21):9119-9130. PubMed ID: 29152202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collapsing avian community on a Hawaiian island.
    Paxton EH; Camp RJ; Gorresen PM; Crampton LH; Leonard DL; VanderWerf EA
    Sci Adv; 2016 Sep; 2(9):e1600029. PubMed ID: 27617287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria.
    Freed LA; Cann RL
    Parasitol Res; 2013 Nov; 112(11):3887-95. PubMed ID: 23982310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental infection of Hawai'i 'Amakihi (hemignathus virens) with West Nile virus and competence of a co-occurring vector, culex quinquefasciatus: potential impacts on endemic Hawaiian avifauna.
    Lapointe DA; Hofmeister EK; Atkinson CT; Porter RE; Dusek RJ
    J Wildl Dis; 2009 Apr; 45(2):257-71. PubMed ID: 19395735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional response of individual Hawaiian Culex quinquefasciatus mosquitoes to the avian malaria parasite Plasmodium relictum.
    Ferreira FC; Videvall E; Seidl CM; Wagner NE; Kilpatrick AM; Fleischer RC; Fonseca DM
    Malar J; 2022 Aug; 21(1):249. PubMed ID: 36038897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmodium prevalence across avian host species is positively associated with exposure to mosquito vectors.
    Medeiros MC; Ricklefs RE; Brawn JD; Hamer GL
    Parasitology; 2015 Nov; 142(13):1612-20. PubMed ID: 26394656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmodium relictum (lineages pSGS1 and pGRW11): complete synchronous sporogony in mosquitoes Culex pipiens pipiens.
    Kazlauskienė R; Bernotienė R; Palinauskas V; Iezhova TA; Valkiūnas G
    Exp Parasitol; 2013 Apr; 133(4):454-61. PubMed ID: 23337824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.