BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24446147)

  • 1. Genome-wide analysis of esophageal adenocarcinoma yields specific copy number aberrations that correlate with prognosis.
    Frankel A; Armour N; Nancarrow D; Krause L; Hayward N; Lampe G; Smithers BM; Barbour A
    Genes Chromosomes Cancer; 2014 Apr; 53(4):324-38. PubMed ID: 24446147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping of homozygous deletions in verified esophageal adenocarcinoma cell lines and xenografts.
    Boonstra JJ; van Marion R; Douben HJ; Lanchbury JS; Timms KM; Abkevich V; Tilanus HW; de Klein A; Dinjens WN
    Genes Chromosomes Cancer; 2012 Mar; 51(3):272-82. PubMed ID: 22081516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis of DNA copy number alterations and loss of heterozygosity in intracranial germ cell tumors.
    Terashima K; Yu A; Chow WY; Hsu WC; Chen P; Wong S; Hung YS; Suzuki T; Nishikawa R; Matsutani M; Nakamura H; Ng HK; Allen JC; Aldape KD; Su JM; Adesina AM; Leung HC; Man TK; Lau CC
    Pediatr Blood Cancer; 2014 Apr; 61(4):593-600. PubMed ID: 24249158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide copy number analysis in esophageal adenocarcinoma using high-density single-nucleotide polymorphism arrays.
    Nancarrow DJ; Handoko HY; Smithers BM; Gotley DC; Drew PA; Watson DI; Clouston AD; Hayward NK; Whiteman DC
    Cancer Res; 2008 Jun; 68(11):4163-72. PubMed ID: 18519675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomics of esophageal adenocarcinoma and squamous cell carcinoma.
    Bandla S; Pennathur A; Luketich JD; Beer DG; Lin L; Bass AJ; Godfrey TE; Litle VR
    Ann Thorac Surg; 2012 Apr; 93(4):1101-6. PubMed ID: 22450065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copy number alterations detected by whole-exome and whole-genome sequencing of esophageal adenocarcinoma.
    Wang X; Li X; Cheng Y; Sun X; Sun X; Self S; Kooperberg C; Dai JY
    Hum Genomics; 2015 Sep; 9(1):22. PubMed ID: 26374103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical issues in oesophageal adenocarcinoma: could DNA copy number hold the key?
    Frankel A; Nancarrow D; Wayte N; Barbour A
    ANZ J Surg; 2012 Sep; 82(9):599-606. PubMed ID: 22856687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of chromosomal copy-number alterations in intrahepatic cholangiocarcinoma.
    Dalmasso C; Carpentier W; Guettier C; Camilleri-Broët S; Borelli WV; Campos Dos Santos CR; Castaing D; Duclos-Vallée JC; Broët P
    BMC Cancer; 2015 Mar; 15():126. PubMed ID: 25879652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The degree of segmental aneuploidy measured by total copy number abnormalities predicts survival and recurrence in superficial gastroesophageal adenocarcinoma.
    Davison JM; Yee M; Krill-Burger JM; Lyons-Weiler MA; Kelly LA; Sciulli CM; Nason KS; Luketich JD; Michalopoulos GK; LaFramboise WA
    PLoS One; 2014; 9(1):e79079. PubMed ID: 24454681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA copy number profile discriminates between esophageal adenocarcinoma and squamous cell carcinoma and represents an independent prognostic parameter in esophageal adenocarcinoma.
    Rumiato E; Pasello G; Montagna M; Scaini MC; De Salvo GL; Parenti A; Cagol M; Ruol A; Ancona E; Amadori A; Saggioro D
    Cancer Lett; 2011 Nov; 310(1):84-93. PubMed ID: 21757289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution genomic screening in mantle cell lymphoma--specific changes correlate with genomic complexity, the proliferation signature and survival.
    Halldórsdóttir AM; Sander B; Göransson H; Isaksson A; Kimby E; Mansouri M; Rosenquist R; Ehrencrona H
    Genes Chromosomes Cancer; 2011 Feb; 50(2):113-21. PubMed ID: 21117067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.
    Wang K; Lim HY; Shi S; Lee J; Deng S; Xie T; Zhu Z; Wang Y; Pocalyko D; Yang WJ; Rejto PA; Mao M; Park CK; Xu J
    Hepatology; 2013 Aug; 58(2):706-17. PubMed ID: 23505090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence in situ hybridization mapping of esophagectomy specimens from patients with Barrett's esophagus with high-grade dysplasia or adenocarcinoma.
    Brankley SM; Fritcher EG; Smyrk TC; Keeney ME; Campion MB; Voss JS; Clayton AC; Wang KK; Lutzke LS; Kipp BR; Halling KC
    Hum Pathol; 2012 Feb; 43(2):172-9. PubMed ID: 21820152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomic hybridization of cancer of the gastroesophageal junction: deletion of 14Q31-32.1 discriminates between esophageal (Barrett's) and gastric cardia adenocarcinomas.
    van Dekken H; Geelen E; Dinjens WN; Wijnhoven BP; Tilanus HW; Tanke HJ; Rosenberg C
    Cancer Res; 1999 Feb; 59(3):748-52. PubMed ID: 9973227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analysis of chromosomal alterations in patients with esophageal squamous cell carcinoma exposed to tobacco and betel quid from high-risk area in India.
    Chattopadhyay I; Singh A; Phukan R; Purkayastha J; Kataki A; Mahanta J; Saxena S; Kapur S
    Mutat Res; 2010 Feb; 696(2):130-8. PubMed ID: 20083228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gains and amplifications of c-myc, EGFR, and 20.q13 loci in the no dysplasia-dysplasia-adenocarcinoma sequence of Barrett's esophagus.
    Rygiel AM; Milano F; Ten Kate FJ; Schaap A; Wang KK; Peppelenbosch MP; Bergman JJ; Krishnadath KK
    Cancer Epidemiol Biomarkers Prev; 2008 Jun; 17(6):1380-5. PubMed ID: 18559552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNP array analysis of acute promyelocytic leukemia may be of prognostic relevance and identifies a potential high risk group with recurrent deletions on chromosomal subband 1q31.3.
    Nowak D; Klaumuenzer M; Hanfstein B; Mossner M; Nolte F; Nowak V; Oblaender J; Hecht A; Hütter G; Ogawa S; Kohlmann A; Haferlach C; Schlegelberger B; Braess J; Seifarth W; Fabarius A; Erben P; Saussele S; Müller MC; Reiter A; Buechner T; Weiss C; Hofmann WK; Lengfelder E
    Genes Chromosomes Cancer; 2012 Aug; 51(8):756-67. PubMed ID: 22488577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broad copy neutral-loss of heterozygosity regions and rare recurring copy number abnormalities in normal karyotype-acute myeloid leukemia genomes.
    Barresi V; Romano A; Musso N; Capizzi C; Consoli C; Martelli MP; Palumbo G; Di Raimondo F; Condorelli DF
    Genes Chromosomes Cancer; 2010 Nov; 49(11):1014-23. PubMed ID: 20725993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome wide SNP array identified multiple mechanisms of genetic changes in Waldenstrom macroglobulinemia.
    Poulain S; Roumier C; Galiègue-Zouitina S; Daudignon A; Herbaux C; Aiijou R; Lainelle A; Broucqsault N; Bertrand E; Manier S; Renneville A; Soenen V; Tricot S; Roche-Lestienne C; Duthilleul P; Preudhomme C; Quesnel B; Morel P; Leleu X
    Am J Hematol; 2013 Nov; 88(11):948-54. PubMed ID: 23861223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genes of the interleukin-18 pathway are associated with susceptibility to Barrett's esophagus and esophageal adenocarcinoma.
    Babar M; Ryan AW; Anderson LA; Segurado R; Turner G; Murray LJ; Murphy SJ; Johnston BT; Comber H; Reynolds JV; McManus R
    Am J Gastroenterol; 2012 Sep; 107(9):1331-41. PubMed ID: 22664470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.