BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24446172)

  • 1. A dynamic model for cellulosic biomass hydrolysis: a comprehensive analysis and validation of hydrolysis and product inhibition mechanisms.
    Tsai CT; Morales-Rodriguez R; Sin G; Meyer AS
    Appl Biochem Biotechnol; 2014 Mar; 172(6):2815-37. PubMed ID: 24446172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass.
    Kadam KL; Rydholm EC; McMillan JD
    Biotechnol Prog; 2004; 20(3):698-705. PubMed ID: 15176871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
    Zheng Y; Pan Z; Zhang R; Jenkins BM
    Biotechnol Bioeng; 2009 Apr; 102(6):1558-69. PubMed ID: 19061240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic Hydrolysis of Pretreated Sugarcane Straw: Kinetic Study and Semi-Mechanistic Modeling.
    Pratto B; de Souza RB; Sousa R; da Cruz AJ
    Appl Biochem Biotechnol; 2016 Apr; 178(7):1430-44. PubMed ID: 26701144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):308-24. PubMed ID: 20080173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic hydrolysis of lime-pretreated corn stover and investigation of the HCH-1 Model: inhibition pattern, degree of inhibition, validity of simplified HCH-1 Model.
    O'Dwyer JP; Zhu L; Granda CB; Holtzapple MT
    Bioresour Technol; 2007 Nov; 98(16):2969-77. PubMed ID: 17140790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):407-25. PubMed ID: 20172020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidemic based modeling of enzymatic hydrolysis of lignocellulosic biomass.
    Tai C; Arellano MG; Keshwani DR
    Biotechnol Prog; 2014; 30(5):1021-8. PubMed ID: 25079785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases.
    Bohlin C; Praestgaard E; Baumann MJ; Borch K; Praestgaard J; Monrad RN; Westh P
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):159-69. PubMed ID: 22311644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter determination and validation for a mechanistic model of the enzymatic saccharification of cellulose-Iβ.
    Nag A; Sprague MA; Griggs AJ; Lischeske JJ; Stickel JJ; Mittal A; Wang W; Johnson DK
    Biotechnol Prog; 2015; 31(5):1237-48. PubMed ID: 26081044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated Barley straw substrates.
    Rosgaard L; Pedersen S; Langston J; Akerhielm D; Cherry JR; Meyer AS
    Biotechnol Prog; 2007; 23(6):1270-6. PubMed ID: 18062669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic fractionation of SAA-pretreated barley straw for production of fuel ethanol and astaxanthin as a value-added co-product.
    Nghiem NP; Kim TH; Yoo CG; Hicks KB
    Appl Biochem Biotechnol; 2013 Sep; 171(2):341-51. PubMed ID: 23836333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of product inhibition as a yield-determining factor in enzymatic high-solid hydrolysis of pretreated corn stover.
    Olsen SN; Borch K; Cruys-Bagger N; Westh P
    Appl Biochem Biotechnol; 2014 Sep; 174(1):146-55. PubMed ID: 25028248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Considering water availability and the effect of solute concentration on high solids saccharification of lignocellulosic biomass.
    Selig MJ; Hsieh CW; Thygesen LG; Himmel ME; Felby C; Decker SR
    Biotechnol Prog; 2012; 28(6):1478-90. PubMed ID: 22915470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates.
    Tu M; Chandra RP; Saddler JN
    Biotechnol Prog; 2007; 23(2):398-406. PubMed ID: 17378581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical evaluation of inhibitory product, substrate, and enzyme effects during the enzymatic saccharification of lignocellulosic biomass.
    Smith BT; Knutsen JS; Davis RH
    Appl Biochem Biotechnol; 2010 May; 161(1-8):468-82. PubMed ID: 20177821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process.
    Yang M; Li W; Liu B; Li Q; Xing J
    Bioresour Technol; 2010 Jul; 101(13):4884-8. PubMed ID: 20061139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Kinetic Modeling of Enzymatic Hydrolysis of Sugarcane Bagasse Pretreated by Hydrothermal and Organosolv Processes.
    Moreira Neto J; Costa JM; Bonomi A; Costa AC
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols.
    Dowe N
    Methods Mol Biol; 2009; 581():233-45. PubMed ID: 19768626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose.
    Rosgaard L; Pedersen S; Cherry JR; Harris P; Meyer AS
    Biotechnol Prog; 2006; 22(2):493-8. PubMed ID: 16599567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.