These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24446367)

  • 21. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.
    Nishizawa M; Nishizawa K
    J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analytical model and multiscale simulations of Aβ peptide aggregation in lipid membranes: towards a unifying description of conformational transitions, oligomerization and membrane damage.
    Pannuzzo M; Milardi D; Raudino A; Karttunen M; La Rosa C
    Phys Chem Chem Phys; 2013 Jun; 15(23):8940-51. PubMed ID: 23588697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LAMBADA and InflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations.
    Schmidt TH; Kandt C
    J Chem Inf Model; 2012 Oct; 52(10):2657-69. PubMed ID: 22989154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular-level organization of saturated and polyunsaturated fatty acids in a phosphatidylcholine bilayer containing cholesterol.
    Pitman MC; Suits F; Mackerell AD; Feller SE
    Biochemistry; 2004 Dec; 43(49):15318-28. PubMed ID: 15581344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coarse-grained force fields for molecular simulations.
    Barnoud J; Monticelli L
    Methods Mol Biol; 2015; 1215():125-49. PubMed ID: 25330962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes.
    Van Lehn RC; Ricci M; Silva PH; Andreozzi P; Reguera J; Voïtchovsky K; Stellacci F; Alexander-Katz A
    Nat Commun; 2014 Jul; 5():4482. PubMed ID: 25042518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstitution of Functionalized Transmembrane Domains of Receptor Proteins into Biomimetic Membranes.
    Scott DR; Silin V; Nanda H
    Langmuir; 2015 Aug; 31(33):9115-24. PubMed ID: 26221793
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers.
    Chiu SW; Jakobsson E; Subramaniam S; Scott HL
    Biophys J; 1999 Nov; 77(5):2462-9. PubMed ID: 10545348
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholesterol behavior in asymmetric lipid bilayers: insights from molecular dynamics simulations.
    Yesylevskyy SO; Demchenko AP
    Methods Mol Biol; 2015; 1232():291-306. PubMed ID: 25331142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Molecular Mechanism Underlying Ligand Binding to the Membrane-Embedded Site of a G-Protein-Coupled Receptor.
    Yuan X; Raniolo S; Limongelli V; Xu Y
    J Chem Theory Comput; 2018 May; 14(5):2761-2770. PubMed ID: 29660291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Markovian and Non-Markovian Modeling of Membrane Dynamics with Milestoning.
    Cardenas AE; Elber R
    J Phys Chem B; 2016 Aug; 120(33):8208-16. PubMed ID: 27016332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accelerating Membrane Simulations with Hydrogen Mass Repartitioning.
    Balusek C; Hwang H; Lau CH; Lundquist K; Hazel A; Pavlova A; Lynch DL; Reggio PH; Wang Y; Gumbart JC
    J Chem Theory Comput; 2019 Aug; 15(8):4673-4686. PubMed ID: 31265271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulation of the partitioning of benzocaine and phenytoin into a lipid bilayer.
    Martin LJ; Chao R; Corry B
    Biophys Chem; 2014 Jan; 185():98-107. PubMed ID: 24406394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular dynamics simulations of the interactions of DMSO with DPPC and DOPC phospholipid membranes.
    Hughes ZE; Mark AE; Mancera RL
    J Phys Chem B; 2012 Oct; 116(39):11911-23. PubMed ID: 22947053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics simulations of the adenosine A2a receptor in POPC and POPE lipid bilayers: effects of membrane on protein behavior.
    Ng HW; Laughton CA; Doughty SW
    J Chem Inf Model; 2014 Feb; 54(2):573-81. PubMed ID: 24460123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment.
    Jones DH; Barber KR; VanDerLoo EW; Grant CW
    Biochemistry; 1998 Nov; 37(47):16780-7. PubMed ID: 9843449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geometric rules of channel gating inferred from computational models of the P2X receptor transmembrane domain.
    Li GH
    J Mol Graph Model; 2015 Sep; 61():107-14. PubMed ID: 26209765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poisson property of the occurrence of flip-flops in a model membrane.
    Arai N; Akimoto T; Yamamoto E; Yasui M; Yasuoka K
    J Chem Phys; 2014 Feb; 140(6):064901. PubMed ID: 24527934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Throughput Simulations of Dimer and Trimer Assembly of Membrane Proteins. The DAFT Approach.
    Wassenaar TA; Pluhackova K; Moussatova A; Sengupta D; Marrink SJ; Tieleman DP; Böckmann RA
    J Chem Theory Comput; 2015 May; 11(5):2278-91. PubMed ID: 26574426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface tension effects on the phase transition of a DPPC bilayer with and without protein: a molecular dynamics simulation.
    Kong X; Qin S; Lu D; Liu Z
    Phys Chem Chem Phys; 2014 May; 16(18):8434-40. PubMed ID: 24668218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.