These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24446367)

  • 41. Molecular dynamics simulation studies of lipid bilayer systems.
    Pasenkiewicz-Gierula M; Murzyn K; Róg T; Czaplewski C
    Acta Biochim Pol; 2000; 47(3):601-11. PubMed ID: 11310963
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations?
    Hub JS; Grubmüller H; de Groot BL
    Handb Exp Pharmacol; 2009; (190):57-76. PubMed ID: 19096772
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lipid membranes with a majority of cholesterol: applications to the ocular lens and aquaporin 0.
    O'Connor JW; Klauda JB
    J Phys Chem B; 2011 May; 115(20):6455-64. PubMed ID: 21539340
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploring the local elastic properties of bilayer membranes using molecular dynamics simulations.
    Pieffet G; Botero A; Peters GH; Forero-Shelton M; Leidy C
    J Phys Chem B; 2014 Nov; 118(45):12883-91. PubMed ID: 25325715
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular simulations of lipid flip-flop in the presence of model transmembrane helices.
    Sapay N; Bennett WF; Tieleman DP
    Biochemistry; 2010 Sep; 49(35):7665-73. PubMed ID: 20666375
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers.
    Fernández ML; Marshall G; Sagués F; Reigada R
    J Phys Chem B; 2010 May; 114(20):6855-65. PubMed ID: 20429602
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Continuum simulations of biomembrane dynamics and the importance of hydrodynamic effects.
    Brown FL
    Q Rev Biophys; 2011 Nov; 44(4):391-432. PubMed ID: 21729348
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular dynamics simulations of membrane channels and transporters.
    Khalili-Araghi F; Gumbart J; Wen PC; Sotomayor M; Tajkhorshid E; Schulten K
    Curr Opin Struct Biol; 2009 Apr; 19(2):128-37. PubMed ID: 19345092
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reactive Oxygen and Nitrogen Species at Phospholipid Bilayers: Peroxynitrous Acid and Its Homolysis Products.
    M Cordeiro R
    J Phys Chem B; 2018 Aug; 122(34):8211-8219. PubMed ID: 30078319
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lessons from free energy simulations of delta-opioid receptor homodimers involving the fourth transmembrane helix.
    Provasi D; Johnston JM; Filizola M
    Biochemistry; 2010 Aug; 49(31):6771-6. PubMed ID: 20617813
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Determination of membrane-insertion free energies by molecular dynamics simulations.
    Gumbart J; Roux B
    Biophys J; 2012 Feb; 102(4):795-801. PubMed ID: 22385850
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Shedding light on the puzzle of drug-membrane interactions: Experimental techniques and molecular dynamics simulations.
    Lopes D; Jakobtorweihen S; Nunes C; Sarmento B; Reis S
    Prog Lipid Res; 2017 Jan; 65():24-44. PubMed ID: 27939295
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Elucidating membrane protein function through long-timescale molecular dynamics simulation.
    Dror RO; Jensen MØ; Shaw DE
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2340-2. PubMed ID: 19965181
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology.
    Friedman R; Khalid S; Aponte-Santamaría C; Arutyunova E; Becker M; Boyd KJ; Christensen M; Coimbra JTS; Concilio S; Daday C; van Eerden FJ; Fernandes PA; Gräter F; Hakobyan D; Heuer A; Karathanou K; Keller F; Lemieux MJ; Marrink SJ; May ER; Mazumdar A; Naftalin R; Pickholz M; Piotto S; Pohl P; Quinn P; Ramos MJ; Schiøtt B; Sengupta D; Sessa L; Vanni S; Zeppelin T; Zoni V; Bondar AN; Domene C
    J Membr Biol; 2018 Dec; 251(5-6):609-631. PubMed ID: 30350011
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plant protein-lipid interfaces studied by molecular dynamics simulations.
    Neubergerová M; Pleskot R
    J Exp Bot; 2024 Sep; 75(17):5237-5250. PubMed ID: 38761107
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Membrane protein dynamics and functional implications in mammalian cells.
    Alenghat FJ; Golan DE
    Curr Top Membr; 2013; 72():89-120. PubMed ID: 24210428
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-Throughput Automated Preparation and Simulation of Membrane Proteins with HTMD.
    Doerr S; Giorgino T; Martínez-Rosell G; Damas JM; De Fabritiis G
    J Chem Theory Comput; 2017 Sep; 13(9):4003-4011. PubMed ID: 28723224
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simulation of subcellular structures.
    Khalid S; Rouse SL
    Curr Opin Struct Biol; 2020 Apr; 61():167-172. PubMed ID: 32006813
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A decade of debate: significance of CO2 permeation through membrane channels still controversial.
    de Groot BL; Hub JS
    Chemphyschem; 2011 Apr; 12(5):1021-2. PubMed ID: 21442707
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.