These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24446377)

  • 1. Spectroscopic studies on the interaction mechanisms of safranin T with herring sperm DNA using acridine orange as a fluorescence probe.
    Long J; Wang XM; Xu DL; Ding LS
    J Mol Recognit; 2014 Mar; 27(3):131-7. PubMed ID: 24446377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between tryptophan-Sm(III) complex and DNA with the use of a acridine orange dye fluorophor probe.
    Xiong XL; Zhao N; Wang XM
    Luminescence; 2016 Feb; 31(1):210-6. PubMed ID: 26016416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA binding studies of hematoxylin-Dy(ш) complex by spectrometry using acridine orange as a probe.
    Xiong X; Huang J; Wang X
    Nucleosides Nucleotides Nucleic Acids; 2014; 33(11):730-45. PubMed ID: 25295749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of vitamin K3 with herring-sperm DNA using spectroscopy and electrochemistry.
    Huang J; Wang X; Fei D; Ding L
    Appl Spectrosc; 2010 Oct; 64(10):1126-30. PubMed ID: 20925982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the binding of neomycin/paromomycin sulfate with DNA using acridine orange as fluorescence probe and molecular docking technique.
    Zhou H; Bi S; Wang Y; Wu J
    J Biomol Struct Dyn; 2017 Aug; 35(10):2077-2089. PubMed ID: 27392082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of the DNA intercalator acridine orange, with itself, with caffeine, and with double stranded DNA.
    Lyles MB; Cameron IL
    Biophys Chem; 2002 Apr; 96(1):53-76. PubMed ID: 11975993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the effect of Tb(IV)-NR complex on herring sperm DNA genetic information by mean of spectroscopic.
    Zhao W; Xiong M; Liu M; Wang S; Xian X; Lin B; Li H
    Nucleosides Nucleotides Nucleic Acids; 2020; 39(7):964-978. PubMed ID: 32043411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular spectroscopy evidence of berberine binding to DNA: comparative binding and thermodynamic profile of intercalation.
    Li XL; Hu YJ; Wang H; Yu BQ; Yue HL
    Biomacromolecules; 2012 Mar; 13(3):873-80. PubMed ID: 22316074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding interaction of cationic phenazinium dyes with calf thymus DNA: a comparative study.
    Sarkar D; Das P; Basak S; Chattopadhyay N
    J Phys Chem B; 2008 Jul; 112(30):9243-9. PubMed ID: 18610959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic investigation on the toxic interaction of melamine with herring sperm DNA.
    Sun Y; Liu R; Chi Z; Qin P; Fang X; Mou Y
    J Biochem Mol Toxicol; 2010; 24(5):323-9. PubMed ID: 20196162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation on the interaction between luteolin and calf thymus DNA by spectroscopic techniques.
    Zhang S; Ling B; Qu F; Sun X
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():521-5. PubMed ID: 22842132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the toxic interaction mechanism between 2-naphthylamine and herring sperm DNA.
    Lin J; Liu Y; Liu L; Song L
    J Biochem Mol Toxicol; 2013 May; 27(5):279-85. PubMed ID: 23625636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the site-selective binding of an antiretroviral drug, Stavudine to calf thymus DNA.
    Sandhya B; Seetharamappa J
    Nucleosides Nucleotides Nucleic Acids; 2013; 32(12):660-9. PubMed ID: 24328563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of acridine orange with double stranded nucleic acids. Spectral and affinity studies.
    Kapuscinski J; Darzynkiewicz Z
    J Biomol Struct Dyn; 1987 Aug; 5(1):127-43. PubMed ID: 3271462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular spectroscopic studies on the interaction of ferulic acid with calf thymus DNA.
    Zhang S; Sun X; Qu F; Kong R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():78-83. PubMed ID: 23659953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators.
    Larsen RW; Jasuja R; Hetzler RK; Muraoka PT; Andrada VG; Jameson DM
    Biophys J; 1996 Jan; 70(1):443-52. PubMed ID: 8770220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic study on the interaction between naphthalimide-polyamine conjugates and DNA.
    Tian Z; Zhao Z; Zang F; Wang Y; Wang C
    J Photochem Photobiol B; 2014 Sep; 138():202-10. PubMed ID: 24976624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic studies on the interaction of sodium benzoate, a food preservative, with calf thymus DNA.
    Zhang G; Ma Y
    Food Chem; 2013 Nov; 141(1):41-7. PubMed ID: 23768324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic analysis on the resveratrol-DNA binding interactions at physiological pH.
    Zhang S; Sun X; Jing Z; Qu F
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):213-6. PubMed ID: 21856217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence enhancement of bis-acridine orange peptide, BAO, upon binding to double stranded DNA.
    Mizuki K; Sakakibara Y; Ueyama H; Nojima T; Waki M; Takenaka S
    Org Biomol Chem; 2005 Feb; 3(4):578-80. PubMed ID: 15703790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.