These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 24446494)

  • 21. Effect on information transfer of synaptic pruning driven by spike-timing-dependent plasticity.
    Ren Q; Zhang Z; Zhao J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):022901. PubMed ID: 22463266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An STDP training algorithm for a spiking neural network with dynamic threshold neurons.
    Strain TJ; McDaid LJ; McGinnity TM; Maguire LP; Sayers HM
    Int J Neural Syst; 2010 Dec; 20(6):463-80. PubMed ID: 21117270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Network evolution induced by asynchronous stimuli through spike-timing-dependent plasticity.
    Yuan WJ; Zhou JF; Zhou C
    PLoS One; 2013; 8(12):e84644. PubMed ID: 24391971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Homeostatic scaling of excitability in recurrent neural networks.
    Remme MW; Wadman WJ
    PLoS Comput Biol; 2012; 8(5):e1002494. PubMed ID: 22570604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interplay between a phase response curve and spike-timing-dependent plasticity leading to wireless clustering.
    Câteau H; Kitano K; Fukai T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051909. PubMed ID: 18643104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatiotemporal learning in analog neural networks using spike-timing-dependent synaptic plasticity.
    Yoshioka M; Scarpetta S; Marinaro M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051917. PubMed ID: 17677108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fading memory and time series prediction in recurrent networks with different forms of plasticity.
    Lazar A; Pipa G; Triesch J
    Neural Netw; 2007 Apr; 20(3):312-22. PubMed ID: 17556114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of sequential activity in networks with temporally asymmetric Hebbian learning.
    Gillett M; Pereira U; Brunel N
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29948-29958. PubMed ID: 33177232
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of the interstimulus interval on temporal processing and learning: testing the state-dependent network model.
    Buonomano DV; Bramen J; Khodadadifar M
    Philos Trans R Soc Lond B Biol Sci; 2009 Jul; 364(1525):1865-73. PubMed ID: 19487189
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A learning rule for the emergence of stable dynamics and timing in recurrent networks.
    Buonomano DV
    J Neurophysiol; 2005 Oct; 94(4):2275-83. PubMed ID: 16160088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Networks that learn the precise timing of event sequences.
    Veliz-Cuba A; Shouval HZ; Josić K; Kilpatrick ZP
    J Comput Neurosci; 2015 Dec; 39(3):235-54. PubMed ID: 26334992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
    Burbank KS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning in neural networks by reinforcement of irregular spiking.
    Xie X; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041909. PubMed ID: 15169045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.
    Liu H; Song Y; Xue F; Li X
    Chaos; 2015 Nov; 25(11):113108. PubMed ID: 26627568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synchrony detection and amplification by silicon neurons with STDP synapses.
    Bofill-i-petit A; Murray AF
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1296-304. PubMed ID: 15484902
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oscillation, Conduction Delays, and Learning Cooperate to Establish Neural Competition in Recurrent Networks.
    Kato H; Ikeguchi T
    PLoS One; 2016; 11(2):e0146044. PubMed ID: 26840529
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mechanism for graded, dynamically routable current propagation in pulse-gated synfire chains and implications for information coding.
    Sornborger AT; Wang Z; Tao L
    J Comput Neurosci; 2015 Oct; 39(2):181-95. PubMed ID: 26227067
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A spiking self-organizing map combining STDP, oscillations, and continuous learning.
    Rumbell T; Denham SL; Wennekers T
    IEEE Trans Neural Netw Learn Syst; 2014 May; 25(5):894-907. PubMed ID: 24808036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frequency of network synchronization in the hippocampus marks learning.
    Ponomarenko AA; Li JS; Korotkova TM; Huston JP; Haas HL
    Eur J Neurosci; 2008 Jun; 27(11):3035-42. PubMed ID: 18588541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.