BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 24446832)

  • 21. The effect of interfacial microstructure on the lipid oxidation stability of oil-in-water emulsions.
    Kargar M; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2011 May; 357(2):527-33. PubMed ID: 21388633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emulsification and oxidation stabilities of DAG-rich algae oil-in-water emulsions prepared with the selected emulsifiers.
    Chang HJ; Lee JH
    J Sci Food Agric; 2020 Jan; 100(1):287-294. PubMed ID: 31525263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactions between iron, phenolic compounds, emulsifiers, and pH in omega-3-enriched oil-in-water emulsions.
    Sørensen AD; Haahr AM; Becker EM; Skibsted LH; Bergenståhl B; Nilsson L; Jacobsen C
    J Agric Food Chem; 2008 Mar; 56(5):1740-50. PubMed ID: 18271542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions of β-carotene with WPI/Tween 80 mixture and oil phase: Effect on the behavior of O/W emulsions during in vitro digestion.
    Gomes A; Costa ALR; Cardoso DD; Náthia-Neves G; Meireles MAA; Cunha RL
    Food Chem; 2021 Mar; 341(Pt 2):128155. PubMed ID: 33045587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. State of dispersed lipid carrier and interface composition as determinants of beta-carotene stability in oil-in-water emulsions.
    Cornacchia L; Roos YH
    J Food Sci; 2011 Oct; 76(8):C1211-8. PubMed ID: 22417586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels.
    Zamani S; Malchione N; Selig MJ; Abbaspourrad A
    Food Funct; 2018 Feb; 9(2):982-990. PubMed ID: 29334398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of metal chelator, sodium azide, and superoxide dismutase on the oxidative stability in riboflavin-photosensitized oil-in-water emulsion systems.
    Lee J; Decker EA
    J Agric Food Chem; 2011 Jun; 59(11):6271-6. PubMed ID: 21542578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New Insights into the Impact of Sodium Chloride on the Lipid Oxidation of Oil-in-Water Emulsions.
    Cui L; Shen P; Gao Z; Yi J; Chen B
    J Agric Food Chem; 2019 Apr; 67(15):4321-4327. PubMed ID: 30883113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of enzymatic degraded polysaccharides from Enteromorpha prolifera on the physical and oxidative stability of fish oil-in-water emulsions.
    Shi MJ; Wang F; Jiang H; Qian WW; Xie YY; Wei XY; Zhou T
    Food Chem; 2020 Aug; 322():126774. PubMed ID: 32305876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and characterization of water/oil and water/oil/water emulsions containing biopolymer-gelled water droplets.
    Surh J; Vladisavljevi Cacute GT; Mun S; McClements DJ
    J Agric Food Chem; 2007 Jan; 55(1):175-84. PubMed ID: 17199330
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of tween 20 hydroperoxides and iron on the oxidation of methyl linoleate and salmon oil dispersions.
    Nuchi CD; McClements DJ; Decker EA
    J Agric Food Chem; 2001 Oct; 49(10):4912-6. PubMed ID: 11600043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prooxidant mechanisms of free fatty acids in stripped soybean oil-in-water emulsions.
    Waraho T; Cardenia V; Rodriguez-Estrada MT; McClements DJ; Decker EA
    J Agric Food Chem; 2009 Aug; 57(15):7112-7. PubMed ID: 19572645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrasonic energy input influence οn the production of sub-micron o/w emulsions containing whey protein and common stabilizers.
    Kaltsa O; Michon C; Yanniotis S; Mandala I
    Ultrason Sonochem; 2013 May; 20(3):881-91. PubMed ID: 23266492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of salts on oxidative stability of lipids in Tween-20 stabilized oil-in-water emulsions.
    Cui L; Cho HT; McClements DJ; Decker EA; Park Y
    Food Chem; 2016 Apr; 197 Pt B():1130-5. PubMed ID: 26675849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes.
    Surh J; Gu YS; Decker EA; McClements DJ
    J Agric Food Chem; 2005 May; 53(10):4236-44. PubMed ID: 15884866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mechanistic kinetic model for lipid oxidation in Tween 20-stabilized O/W emulsions.
    Nguyen KA; Boerkamp VJP; van Duynhoven JPM; Dubbelboer A; Hennebelle M; Wierenga PA
    Food Chem; 2024 Sep; 451():139404. PubMed ID: 38714112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants.
    Uluata S; McClements DJ; Decker EA
    J Agric Food Chem; 2015 Oct; 63(42):9333-40. PubMed ID: 26452408
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors affecting lycopene oxidation in oil-in-water emulsions.
    Boon CS; Xu Z; Yue X; McClements DJ; Weiss J; Decker EA
    J Agric Food Chem; 2008 Feb; 56(4):1408-14. PubMed ID: 18237137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Submicron complex lipid carriers for curcumin delivery to intestinal epithelial cells: Effect of different emulsifiers on bioaccessibility and cell uptake.
    Yucel C; Quagliariello V; Iaffaioli RV; Ferrari G; Donsì F
    Int J Pharm; 2015 Oct; 494(1):357-69. PubMed ID: 26291881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water-in-oil-in-water double emulsions loaded with chlorogenic acid: release mechanisms and oxidative stability.
    Dima C; Dima S
    J Microencapsul; 2018 Sep; 35(6):584-599. PubMed ID: 30557070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.