These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24446882)

  • 1. Rutile (β-)MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance.
    Tompsett DA; Parker SC; Islam MS
    J Am Chem Soc; 2014 Jan; 136(4):1418-26. PubMed ID: 24446882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen vacancy formation and reduction properties of β-MnO2 grain boundaries and the potential for high electrochemical performance.
    Dawson JA; Tanaka I
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17776-84. PubMed ID: 25247793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles calculations of oxygen vacancy formation and metallic behavior at a β-MnO2 grain boundary.
    Dawson JA; Chen H; Tanaka I
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1726-34. PubMed ID: 25559707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Li Intercalation into a β-MnO2 Grain Boundary.
    Dawson JA; Tanaka I
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8125-31. PubMed ID: 25808228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory study on the structural and electronic properties of low index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 composite systems.
    Beltrán A; Andrés J; Sambrano JR; Longo E
    J Phys Chem A; 2008 Sep; 112(38):8943-52. PubMed ID: 18680263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A density functional theory study of atomic steps on stoichiometric rutile TiO2(110).
    Stausholm-Møller J; Kristoffersen HH; Martinez U; Hammer B
    J Chem Phys; 2013 Dec; 139(23):234704. PubMed ID: 24359383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not.
    Radin MD; Rodriguez JF; Tian F; Siegel DJ
    J Am Chem Soc; 2012 Jan; 134(2):1093-103. PubMed ID: 22148314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β-MnO2 as a cathode material for lithium ion batteries from first principles calculations.
    Wang D; Liu LM; Zhao SJ; Li BH; Liu H; Lang XF
    Phys Chem Chem Phys; 2013 Jun; 15(23):9075-83. PubMed ID: 23646354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical evaluation of the colossal Seebeck coefficient of nanostructured rutile MnO2.
    Music D; Schneider JM
    J Phys Condens Matter; 2015 Mar; 27(11):115302. PubMed ID: 25730181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative stability of low-index V(2)O(5) surfaces: a density functional investigation.
    Goclon J; Grybos R; Witko M; Hafner J
    J Phys Condens Matter; 2009 Mar; 21(9):095008. PubMed ID: 21817381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of α-MnO2 nanowires modified by Co3O4 nanoparticles as a high-performance catalyst for rechargeable Li-O2 batteries.
    Wang F; Wen Z; Shen C; Wu X; Liu J
    Phys Chem Chem Phys; 2016 Jan; 18(2):926-31. PubMed ID: 26651019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of sub 1 nm supported clusters: (TiO2)n clusters supported on rutile TiO2 (110).
    Iwaszuk A; Nolan M
    Phys Chem Chem Phys; 2011 Mar; 13(11):4963-73. PubMed ID: 21331430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical chlorine evolution at rutile oxide (110) surfaces.
    Hansen HA; Man IC; Studt F; Abild-Pedersen F; Bligaard T; Rossmeisl J
    Phys Chem Chem Phys; 2010 Jan; 12(1):283-90. PubMed ID: 20024470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology and surface properties of LiVOPO4: a first principles study.
    Li Y; Zhang J; Yang F; Liang J; Sun H; Tang S; Wang R
    Phys Chem Chem Phys; 2014 Nov; 16(44):24604-9. PubMed ID: 25312393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Intrinsic Catalytic Activity of λ-MnO2 by Electrochemical Tuning and Oxygen Vacancy Generation.
    Lee S; Nam G; Sun J; Lee JS; Lee HW; Chen W; Cho J; Cui Y
    Angew Chem Int Ed Engl; 2016 Jul; 55(30):8599-604. PubMed ID: 27254822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoted Electrochemical Performance of β-MnO
    Chen C; Xu K; Ji X; Miao L; Jiang J
    ACS Appl Mater Interfaces; 2017 May; 9(17):15176-15181. PubMed ID: 28397492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.