These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 24446922)
1. Fabrication of self-assembled (-)-epigallocatechin gallate (EGCG) ovalbumin-dextran conjugate nanoparticles and their transport across monolayers of human intestinal epithelial Caco-2 cells. Li Z; Gu L J Agric Food Chem; 2014 Feb; 62(6):1301-9. PubMed ID: 24446922 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of coated bovine serum albumin (BSA)-epigallocatechin gallate (EGCG) nanoparticles and their transport across monolayers of human intestinal epithelial Caco-2 cells. Li Z; Ha J; Zou T; Gu L Food Funct; 2014 Jun; 5(6):1278-85. PubMed ID: 24741679 [TBL] [Abstract][Full Text] [Related]
3. Niosomes Consisting of Tween-60 and Cholesterol Improve the Chemical Stability and Antioxidant Activity of (-)-Epigallocatechin Gallate under Intestinal Tract Conditions. Liang R; Chen L; Yokoyama W; Williams PA; Zhong F J Agric Food Chem; 2016 Dec; 64(48):9180-9188. PubMed ID: 27933988 [TBL] [Abstract][Full Text] [Related]
4. Cellular uptake and cytotoxicity of chitosan-caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Hu B; Ting Y; Zeng X; Huang Q Carbohydr Polym; 2012 Jun; 89(2):362-70. PubMed ID: 24750731 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of chitosan-coated epigallocatechin-3-gallate (EGCG)-hordein nanoparticles and their transcellular permeability in Caco-2/HT29 cocultures. Song H; He A; Guan X; Chen Z; Bao Y; Huang K Int J Biol Macromol; 2022 Jan; 196():144-150. PubMed ID: 34914913 [TBL] [Abstract][Full Text] [Related]
6. Controlled release of β-carotene in β-lactoglobulin-dextran-conjugated nanoparticles' in vitro digestion and transport with Caco-2 monolayers. Yi J; Lam TI; Yokoyama W; Cheng LW; Zhong F J Agric Food Chem; 2014 Sep; 62(35):8900-7. PubMed ID: 25131216 [TBL] [Abstract][Full Text] [Related]
7. Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles. Li B; Du W; Jin J; Du Q J Agric Food Chem; 2012 Apr; 60(13):3477-84. PubMed ID: 22409289 [TBL] [Abstract][Full Text] [Related]
8. Chitosan nanoparticles enhance the plasma exposure of (-)-epigallocatechin gallate in mice through an enhancement in intestinal stability. Dube A; Nicolazzo JA; Larson I Eur J Pharm Sci; 2011 Oct; 44(3):422-6. PubMed ID: 21925598 [TBL] [Abstract][Full Text] [Related]
9. Ferritin glycosylated by chitosan as a novel EGCG nano-carrier: Structure, stability, and absorption analysis. Yang R; Liu Y; Gao Y; Wang Y; Blanchard C; Zhou Z Int J Biol Macromol; 2017 Dec; 105(Pt 1):252-261. PubMed ID: 28693994 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of Zein-Lecithin-EGCG complex nanoparticles: Characterization, controlled release in simulated gastrointestinal digestion. Xie H; Liu C; Gao J; Shi J; Ni F; Luo X; He Y; Ren G; Luo Z Food Chem; 2021 Dec; 365():130542. PubMed ID: 34265644 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of epigallocatechin-3-gallate nanocarrier based on glycosylated casein: stability and interaction mechanism. Xue J; Tan C; Zhang X; Feng B; Xia S J Agric Food Chem; 2014 May; 62(20):4677-84. PubMed ID: 24670204 [TBL] [Abstract][Full Text] [Related]
12. pH and temperature stability of (-)-epigallocatechin-3-gallate-β-cyclodextrin inclusion complex-loaded chitosan nanoparticles. Liu F; Majeed H; Antoniou J; Li Y; Ma Y; Yokoyama W; Ma J; Zhong F Carbohydr Polym; 2016 Sep; 149():340-7. PubMed ID: 27261758 [TBL] [Abstract][Full Text] [Related]
13. Nano-encapsulation of epigallocatechin gallate in the ferritin-chitosan double shells: Simulated digestion and absorption evaluation. Yang R; Liu Y; Gao Y; Yang Z; Zhao S; Wang Y; Blanchard C; Zhou Z Food Res Int; 2018 Jun; 108():1-7. PubMed ID: 29735037 [TBL] [Abstract][Full Text] [Related]
14. Maillard-Reacted Whey Protein Isolates and Epigallocatechin Gallate Complex Enhance the Thermal Stability of the Pickering Emulsion Delivery of Curcumin. Liu G; Wang Q; Hu Z; Cai J; Qin X J Agric Food Chem; 2019 May; 67(18):5212-5220. PubMed ID: 30995032 [TBL] [Abstract][Full Text] [Related]
15. Improving the effectiveness of (-)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid. Hong Z; Xu Y; Yin JF; Jin J; Jiang Y; Du Q J Agric Food Chem; 2014 Dec; 62(52):12603-9. PubMed ID: 25483592 [TBL] [Abstract][Full Text] [Related]
16. Preparation of β-lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model. Gao J; Mao Y; Xiang C; Cao M; Ren G; Wang K; Ma X; Wu D; Xie H Food Chem; 2021 Aug; 354():129516. PubMed ID: 33744663 [TBL] [Abstract][Full Text] [Related]
17. Native and thermally modified protein-polyphenol coassemblies: lactoferrin-based nanoparticles and submicrometer particles as protective vehicles for (-)-epigallocatechin-3-gallate. Yang W; Xu C; Liu F; Yuan F; Gao Y J Agric Food Chem; 2014 Nov; 62(44):10816-27. PubMed ID: 25310084 [TBL] [Abstract][Full Text] [Related]
18. Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate. Liu Q; Cai W; Zhen T; Ji N; Dai L; Xiong L; Sun Q Int J Biol Macromol; 2020 Oct; 161():481-491. PubMed ID: 32534085 [TBL] [Abstract][Full Text] [Related]
19. Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles. Wu S; Sun K; Wang X; Wang D; Wan X; Zhang J J Agric Food Chem; 2013 Jul; 61(30):7268-75. PubMed ID: 23822637 [TBL] [Abstract][Full Text] [Related]
20. Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Wu SJ; Don TM; Lin CW; Mi FL Mar Drugs; 2014 Nov; 12(11):5677-97. PubMed ID: 25421323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]