BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24447127)

  • 1. "Nok": a phytosterol-based amphiphile enabling transition-metal-catalyzed couplings in water at room temperature.
    Klumphu P; Lipshutz BH
    J Org Chem; 2014 Feb; 79(3):888-900. PubMed ID: 24447127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TPGS-750-M: a second-generation amphiphile for metal-catalyzed cross-couplings in water at room temperature.
    Lipshutz BH; Ghorai S; Abela AR; Moser R; Nishikata T; Duplais C; Krasovskiy A; Gaston RD; Gadwood RC
    J Org Chem; 2011 Jun; 76(11):4379-91. PubMed ID: 21548658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical characterizations of microemulsion systems using tocopheryl polyethylene glycol 1000 succinate (TPGS) as a surfactant for the oral delivery of protein drugs.
    Ke WT; Lin SY; Ho HO; Sheu MT
    J Control Release; 2005 Feb; 102(2):489-507. PubMed ID: 15653166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bridging the gap between transition metal- and bio-catalysis via aqueous micellar catalysis.
    Cortes-Clerget M; Akporji N; Zhou J; Gao F; Guo P; Parmentier M; Gallou F; Berthon JY; Lipshutz BH
    Nat Commun; 2019 May; 10(1):2169. PubMed ID: 31092815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified routes to the "designer" surfactant PQS.
    Moser R; Ghorai S; Lipshutz BH
    J Org Chem; 2012 Apr; 77(7):3143-8. PubMed ID: 22413960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanomicelle-enhanced, asymmetric ERED-catalyzed reductions of activated olefins. Applications to 1-pot chemo- and bio-catalysis sequences in water.
    Akporji N; Singhania V; Dussart-Gautheret J; Gallou F; Lipshutz BH
    Chem Commun (Camb); 2021 Nov; 57(89):11847-11850. PubMed ID: 34698744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and evaluation of celecoxib microparticle surface modified by hydrophilic cellulose and surfactant.
    Ha ES; Ok J; Noh J; Jeong HY; Choo GH; Jung YS; Baek IH; Kim JS; Cho W; Hwang SJ; Kim MS
    Int J Biol Macromol; 2015 Jan; 72():1473-8. PubMed ID: 25451745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the way towards greener transition-metal-catalyzed processes as quantified by E factors.
    Lipshutz BH; Isley NA; Fennewald JC; Slack ED
    Angew Chem Int Ed Engl; 2013 Oct; 52(42):10952-8. PubMed ID: 24030905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly(L-lactide)-vitamin E TPGS nanoparticles enhanced the cytotoxicity of doxorubicin in drug-resistant MCF-7 breast cancer cells.
    Li PY; Lai PS; Hung WC; Syu WJ
    Biomacromolecules; 2010 Oct; 11(10):2576-82. PubMed ID: 20722436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-α-tocopherol polyethylene glycol succinate-based derivative nanoparticles as a novel carrier for paclitaxel delivery.
    Wu Y; Chu Q; Tan S; Zhuang X; Bao Y; Wu T; Zhang Z
    Int J Nanomedicine; 2015; 10():5219-35. PubMed ID: 26316751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic Synthesis of β-Sitosterol Laurate by Candida rugosa Lipase AY30 in the Water/AOT/Isooctane Reverse Micelle.
    Chen S; Li J; Fu Z; Wei G; Li H; Zhang B; Zheng L; Deng Z
    Appl Biochem Biotechnol; 2020 Oct; 192(2):392-414. PubMed ID: 32388606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the micellar properties of the tocopheryl polyethylene glycol succinate surfactants TPGS 400 and TPGS 1000 by steady state fluorometry.
    Sadoqi M; Lau-Cam CA; Wu SH
    J Colloid Interface Sci; 2009 May; 333(2):585-9. PubMed ID: 19232633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of poly(ε-caprolactone) chain lengths of poly(ε-caprolactone)-co-d-α-tocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBR3 breast cancer cells.
    Suksiriworapong J; Phoca K; Ngamsom S; Sripha K; Moongkarndi P; Junyaprasert VB
    Eur J Pharm Biopharm; 2016 Apr; 101():15-24. PubMed ID: 26802701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-nanoemulsifying drug delivery system of cefpodoxime proxetil containing tocopherol polyethylene glycol succinate.
    Bajaj A; Rao MR; Khole I; Munjapara G
    Drug Dev Ind Pharm; 2013 May; 39(5):635-45. PubMed ID: 22564007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A concise synthesis of beta-sitosterol and other phytosterols.
    Hang J; Dussault P
    Steroids; 2010 Dec; 75(12):879-83. PubMed ID: 20685279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase behavior of TPGS-PEG400/1450 systems and their application to liquid formulation: a formulation platform approach.
    Li J; Yang B; Levons J; Pinnamaneni S; Raghavan K
    J Pharm Sci; 2011 Nov; 100(11):4907-21. PubMed ID: 21656767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, isolation and characterisation of beta-sitosterol and beta-sitosterol oxide derivatives.
    McCarthy FO; Chopra J; Ford A; Hogan SA; Kerry JP; O'Brien NM; Ryan E; Maguire AR
    Org Biomol Chem; 2005 Aug; 3(16):3059-65. PubMed ID: 16186940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential use of cholecalciferol polyethylene glycol succinate as a novel pharmaceutical additive.
    Zhao HZ; Tan EC; Yung LY
    J Biomed Mater Res A; 2008 Mar; 84(4):954-64. PubMed ID: 17647225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics of micelles and cubic phase structures with ethoxylated phytosterol surfactant in water.
    Folmer BM; Nydén M
    Langmuir; 2008 Jun; 24(13):6441-6. PubMed ID: 18507418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of Nanoparticles Derived from Designer Surfactant TPGS-750-M in Water, As Used in Organic Synthesis.
    Andersson MP; Gallou F; Klumphu P; Takale BS; Lipshutz BH
    Chemistry; 2018 May; 24(26):6778-6786. PubMed ID: 29504665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.