BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 24447448)

  • 1. Chemometric classification of casework arson samples based on gasoline content.
    Sinkov NA; Sandercock PM; Harynuk JJ
    Forensic Sci Int; 2014 Feb; 235():24-31. PubMed ID: 24447448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated optimization and construction of chemometric models based on highly variable raw chromatographic data.
    Sinkov NA; Johnston BM; Sandercock PM; Harynuk JJ
    Anal Chim Acta; 2011 Jul; 697(1-2):8-15. PubMed ID: 21641412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of an untargeted chemometric approach for the source inference of ignitable liquids in forensic science.
    de Figueiredo M; Cordella CBY; Jouan-Rimbaud Bouveresse D; Archer X; Bégué JM; Rutledge DN
    Forensic Sci Int; 2019 Feb; 295():8-18. PubMed ID: 30553191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Fire Suppression Agents and Weathering in the Analysis of Fire Debris by HS-MS eNose.
    Falatová B; Ferreiro-González M; Martín-Alberca C; Kačíková D; Galla Š; Palma M; G Barroso C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29899213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique ion filter: a data reduction tool for GC/MS data preprocessing prior to chemometric analysis.
    Adutwum LA; Harynuk JJ
    Anal Chem; 2014 Aug; 86(15):7726-33. PubMed ID: 25002039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the Weathering Process of Gasoline by eNose.
    Aliaño-González MJ; Ferreiro-González M; Barbero GF; Ayuso J; Palma M; Barroso CG
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29304020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of gasoline in fire debris using machine learning: Part II, application of a neural network.
    Bogdal C; Schellenberg R; Lory M; Bovens M; Höpli O
    Forensic Sci Int; 2022 Mar; 332():111177. PubMed ID: 35065332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of gasoline in fire debris using machine learning: Part I, application of random forest, gradient boosting, support vector machine, and naïve bayes.
    Bogdal C; Schellenberg R; Höpli O; Bovens M; Lory M
    Forensic Sci Int; 2022 Feb; 331():111146. PubMed ID: 34968789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional cluster resolution for guiding automatic chemometric model optimization.
    Sinkov NA; Harynuk JJ
    Talanta; 2013 Jan; 103():252-9. PubMed ID: 23200385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of gasoline data obtained by gas chromatography using a piecewise alignment algorithm combined with feature selection and principal component analysis.
    Pierce KM; Hope JL; Johnson KJ; Wright BW; Synovec RE
    J Chromatogr A; 2005 Nov; 1096(1-2):101-10. PubMed ID: 16301073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis.
    Lopatka M; Sigman ME; Sjerps MJ; Williams MR; Vivó-Truyols G
    Forensic Sci Int; 2015 Jul; 252():177-86. PubMed ID: 26005858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total Ion Spectra versus Segmented Total Ion Spectra as Preprocessing Tools for Gas Chromatography - Mass Spectrometry Data.
    Adutwum LA; Abel RJ; Harynuk J
    J Forensic Sci; 2018 Jul; 63(4):1059-1068. PubMed ID: 29023723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel method based on ion mobility spectrometry sum spectrum for the characterization of ignitable liquids in fire debris.
    Aliaño-González MJ; Ferreiro-González M; Barbero GF; Palma M
    Talanta; 2019 Jul; 199():189-194. PubMed ID: 30952245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of differential mobility spectrometry and mass spectrometry for gas chromatographic detection of ignitable liquids from fire debris using projected difference resolution.
    Lu Y; Chen P; Harrington PB
    Anal Bioanal Chem; 2009 Aug; 394(8):2061-7. PubMed ID: 19396432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical tools for the analysis of fire debris. A review: 2008-2015.
    Martín-Alberca C; Ortega-Ojeda FE; García-Ruiz C
    Anal Chim Acta; 2016 Jul; 928():1-19. PubMed ID: 27251852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cluster resolution: a metric for automated, objective and optimized feature selection in chemometric modeling.
    Sinkov NA; Harynuk JJ
    Talanta; 2011 Jan; 83(4):1079-87. PubMed ID: 21215842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of Spectral Modifications in Acidified Ignitable Liquids by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy.
    Martín-Alberca C; Ojeda FE; García-Ruiz C
    Appl Spectrosc; 2016 Mar; 70(3):520-30. PubMed ID: 26810182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris.
    Lu Y; Harrington PB
    Anal Chem; 2007 Sep; 79(17):6752-9. PubMed ID: 17683164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.