These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 24447467)

  • 1. Practical observations on the performance of bare silica in hydrophilic interaction compared with C18 reversed-phase liquid chromatography.
    Heaton JC; Wang X; Barber WE; Buckenmaier SM; McCalley DV
    J Chromatogr A; 2014 Feb; 1328():7-15. PubMed ID: 24447467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the kinetic performance and retentivity of sub-2 μm core–shell, hybrid and conventional bare silica phases in hydrophilic interaction.
    Heaton JC; McCalley DV
    J Chromatogr A; 2014 Dec; 1371():106-16. PubMed ID: 25458525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of reversed-phase and hydrophilic interaction liquid chromatography for the separation of ephedrines.
    Heaton J; Gray N; Cowan DA; Plumb RS; Legido-Quigley C; Smith NW
    J Chromatogr A; 2012 Mar; 1228():329-37. PubMed ID: 21999982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds?
    McCalley DV
    J Chromatogr A; 2007 Nov; 1171(1-2):46-55. PubMed ID: 17931636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization, and application of a novel multifunctional stationary phase for hydrophilic interaction/reversed phase mixed-mode chromatography.
    Aral H; Çelik KS; Altındağ R; Aral T
    Talanta; 2017 Nov; 174():703-714. PubMed ID: 28738646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrosilated silica-based columns: the effects of mobile phase and temperature on dual hydrophilic-reversed-phase separation mechanism of phenolic acids.
    Soukup J; Jandera P
    J Chromatogr A; 2012 Mar; 1228():125-34. PubMed ID: 21782183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of underivatized silica and zwitterionic sulfobetaine hydrophilic interaction liquid chromatography stationary phases for global metabolomics of human plasma.
    Sonnenberg RA; Naz S; Cougnaud L; Vuckovic D
    J Chromatogr A; 2019 Dec; 1608():460419. PubMed ID: 31439439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated dual two-dimensional liquid chromatography approach for fast acquisition of three-dimensional data using combinations of zwitterionic polymethacrylate and silica-based monolithic columns.
    Hájek T; Jandera P; Staňková M; Česla P
    J Chromatogr A; 2016 May; 1446():91-102. PubMed ID: 27083260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation and comparison of the kinetic performance of ultra-high performance liquid chromatography and high-performance liquid chromatography columns in hydrophilic interaction and reversed-phase liquid chromatography conditions.
    Song H; Adams E; Desmet G; Cabooter D
    J Chromatogr A; 2014 Nov; 1369():83-91. PubMed ID: 25441074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, characterization and application of a reversed phase liquid chromatography/hydrophilic interaction chromatography mixed-mode C18-DTT stationary phase.
    Wang Q; Long Y; Yao L; Xu L; Shi ZG; Xu L
    Talanta; 2016; 146():442-51. PubMed ID: 26695288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive kinetic optimisation of hydrophilic interaction chromatography × reversed phase liquid chromatography separations: Experimental verification and application to phenolic analysis.
    Muller M; Tredoux AGJ; de Villiers A
    J Chromatogr A; 2018 Oct; 1571():107-120. PubMed ID: 30100525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of surfactin-modified silica stationary phase for reversed-phase and hydrophilic interaction liquid chromatography.
    Ohyama K; Inoue Y; Kishikawa N; Kuroda N
    J Chromatogr A; 2014 Dec; 1371():257-60. PubMed ID: 25456604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-fast high-efficiency enantioseparations by means of a teicoplanin-based chiral stationary phase made on sub-2 μm totally porous silica particles of narrow size distribution.
    Ismail OH; Ciogli A; Villani C; De Martino M; Pierini M; Cavazzini A; Bell DS; Gasparrini F
    J Chromatogr A; 2016 Jan; 1427():55-68. PubMed ID: 26687167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical examination of flow rate effects and influence of the stationary phase water layer on peak shape and retention in hydrophilic interaction liquid chromatography.
    McCalley DV
    J Chromatogr A; 2024 Jan; 1715():464608. PubMed ID: 38194863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of catecholamines in urine using hydrophilic interaction chromatography with electrochemical detection.
    Kumar A; Hart JP; McCalley DV
    J Chromatogr A; 2011 Jun; 1218(25):3854-61. PubMed ID: 21571284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of cephalosporins by hydrophilic interaction chromatography.
    Liu Q; Xu L; Ke Y; Jin Y; Zhang F; Liang X
    J Pharm Biomed Anal; 2011 Feb; 54(3):623-8. PubMed ID: 21035295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention behaviour of imidazolium ionic liquid cations on 1.7 μm ethylene bridged hybrid silica column using acetonitrile-rich and water-rich mobile phases.
    Orentienė A; Olšauskaitė V; Vičkačkaitė V; Padarauskas A
    J Chromatogr A; 2011 Sep; 1218(39):6884-91. PubMed ID: 21871632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New reversed-phase/anion-exchange/hydrophilic interaction mixed-mode stationary phase based on dendritic polymer-modified porous silica.
    Li Y; Yang J; Jin J; Sun X; Wang L; Chen J
    J Chromatogr A; 2014 Apr; 1337():133-9. PubMed ID: 24630062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide retention time prediction in hydrophilic interaction liquid chromatography. Comparison of separation selectivity between bare silica and bonded stationary phases.
    Spicer V; Krokhin OV
    J Chromatogr A; 2018 Jan; 1534():75-84. PubMed ID: 29306631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between the intra-particle diffusivity in the hydrophilic interaction chromatography and reversed phase liquid chromatography modes. Impact on the column efficiency.
    Gritti F; Guiochon G
    J Chromatogr A; 2013 Jul; 1297():85-95. PubMed ID: 23726350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.