These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24447906)

  • 1. Dynamic stability margin using a marker based system and Tekscan: a comparison of four gait conditions.
    Lugade V; Kaufman K
    Gait Posture; 2014; 40(1):252-4. PubMed ID: 24447906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measures of dynamic balance during level walking in healthy adult subjects: Relationship with age, anthropometry and spatio-temporal gait parameters.
    Lencioni T; Carpinella I; Rabuffetti M; Cattaneo D; Ferrarin M
    Proc Inst Mech Eng H; 2020 Feb; 234(2):131-140. PubMed ID: 31736408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Center of pressure trajectory during gait: a comparison of four foot positions.
    Lugade V; Kaufman K
    Gait Posture; 2014 Sep; 40(4):719-22. PubMed ID: 25052586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying stair gait stability in young and older adults, with modifications to insole hardness.
    Antonio PJ; Perry SD
    Gait Posture; 2014 Jul; 40(3):429-34. PubMed ID: 24954148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of balance strategy over gait cycle based on margin of stability.
    Ohtsu H; Yoshida S; Minamisawa T; Takahashi T; Yomogida SI; Kanzaki H
    J Biomech; 2019 Oct; 95():109319. PubMed ID: 31466715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasible stability region in the frontal plane during human gait.
    Yang F; Espy D; Pai YC
    Ann Biomed Eng; 2009 Dec; 37(12):2606-14. PubMed ID: 19760504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of gait speed on the control of mediolateral dynamic stability during gait initiation.
    Caderby T; Yiou E; Peyrot N; Begon M; Dalleau G
    J Biomech; 2014 Jan; 47(2):417-23. PubMed ID: 24290175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between margin of stability and deviations in spatiotemporal gait features in healthy young adults.
    Sivakumaran S; Schinkel-Ivy A; Masani K; Mansfield A
    Hum Mov Sci; 2018 Feb; 57():366-373. PubMed ID: 28987772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognitive-motor dual-task interference modulates mediolateral dynamic stability during gait in post-stroke individuals.
    Tisserand R; Armand S; Allali G; Schnider A; Baillieul S
    Hum Mov Sci; 2018 Apr; 58():175-184. PubMed ID: 29448162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between performance and kinematic/kinetic variables of stair descent in patients with medial knee osteoarthritis: An evaluation of dynamic stability using an extrapolated center of mass.
    Koyama Y; Tateuchi H; Nishimura R; Ji X; Umegaki H; Kobayashi M; Ichihashi N
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1066-70. PubMed ID: 26455802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Center of mass and base of support interaction during gait.
    Lugade V; Lin V; Chou LS
    Gait Posture; 2011 Mar; 33(3):406-11. PubMed ID: 21211977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the dynamic margins of stability for use in evaluations of balance following a support-surface perturbation.
    Inkol KA; Vallis LA
    J Biomech; 2019 Oct; 95():109302. PubMed ID: 31481246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive control of gait stability in reducing slip-related backward loss of balance.
    Bhatt T; Wening JD; Pai YC
    Exp Brain Res; 2006 Mar; 170(1):61-73. PubMed ID: 16344930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of visual rotations on heading direction and center of mass control during steady-state gait.
    Biere J; Groen BE; Keijsers NLW
    J Neurophysiol; 2024 Jun; 131(6):1260-1270. PubMed ID: 38748413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait and Dynamic Balance Sensing Using Wearable Foot Sensors.
    Mohamed Refai MI; van Beijnum BF; Buurke JH; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):218-227. PubMed ID: 30582548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive control of center of mass (global) motion and its joint (local) origin in gait.
    Yang F; Pai YC
    J Biomech; 2014 Aug; 47(11):2797-800. PubMed ID: 24998991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic gait stability in children with and without Down syndrome during overground walking.
    Beerse M; Alam T; Wu J
    Clin Biomech (Bristol, Avon); 2024 Jan; 111():106163. PubMed ID: 38154438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of altering heel wedge properties on gait with the Intrepid Dynamic Exoskeletal Orthosis.
    Ikeda AJ; Fergason JR; Wilken JM
    Prosthet Orthot Int; 2018 Jun; 42(3):265-274. PubMed ID: 28870146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of narrow base gait on mediolateral balance control in young and older adults.
    Arvin M; Mazaheri M; Hoozemans MJM; Pijnappels M; Burger BJ; Verschueren SMP; van Dieën JH
    J Biomech; 2016 May; 49(7):1264-1267. PubMed ID: 27018156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods.
    Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.