These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24447906)

  • 21. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods.
    Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of stability during gait in patients with spinal deformity-A preliminary analysis using the dynamic stability margin.
    Simon AL; Lugade V; Bernhardt K; Larson AN; Kaufman K
    Gait Posture; 2017 Jun; 55():37-42. PubMed ID: 28411443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental changes in spatial margin of stability in typically developing children relate to the mechanics of gait.
    Hallemans A; Verbecque E; Dumas R; Cheze L; Van Hamme A; Robert T
    Gait Posture; 2018 Jun; 63():33-38. PubMed ID: 29705520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicted threshold against backward balance loss in gait.
    Yang F; Anderson FC; Pai YC
    J Biomech; 2007; 40(4):804-11. PubMed ID: 16723127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upward perturbations trigger a stumbling effect.
    Cano Porras D; Heimler B; Jacobs JV; Naor SK; Inzelberg R; Zeilig G; Plotnik M
    Hum Mov Sci; 2023 Apr; 88():103069. PubMed ID: 36871477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prospective dynamic balance control during the swing phase of walking: stability boundaries and time-to-contact analysis.
    Remelius JG; Hamill J; van Emmerik RE
    Hum Mov Sci; 2014 Aug; 36():227-45. PubMed ID: 24856189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Textured Foot Orthotics on Dynamic Stability and Turning Performance in Parkinson's Disease.
    Robb KA; Perry SD
    J Mot Behav; 2020; 52(4):396-403. PubMed ID: 31314695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wireless prototype based on pressure and bending sensors for measuring gait [corrected] quality.
    Grenez F; Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A
    Sensors (Basel); 2013 Jul; 13(8):9679-703. PubMed ID: 23899935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of shoe characteristics on dynamic stability when walking on even and uneven surfaces in young and older people.
    Menant JC; Perry SD; Steele JR; Menz HB; Munro BJ; Lord SR
    Arch Phys Med Rehabil; 2008 Oct; 89(10):1970-6. PubMed ID: 18760402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does the margin of stability measure predict medio-lateral stability of gait with a constrained-width base of support?
    Gill L; Huntley AH; Mansfield A
    J Biomech; 2019 Oct; 95():109317. PubMed ID: 31466717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The condition for dynamic stability.
    Hof AL; Gazendam MG; Sinke WE
    J Biomech; 2005 Jan; 38(1):1-8. PubMed ID: 15519333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Locomotor stability and adaptation during perturbed walking across the adult female lifespan.
    McCrum C; Epro G; Meijer K; Zijlstra W; Brüggemann GP; Karamanidis K
    J Biomech; 2016 May; 49(7):1244-1247. PubMed ID: 26970886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of ground reaction force and marker-based methods to estimate mediolateral center of mass displacement and margins of stability during walking.
    Buurke TJW; van de Venis L; den Otter R; Nonnekes J; Keijsers N
    J Biomech; 2023 Jan; 146():111415. PubMed ID: 36542905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Symmetry and reproducibility of the components of dynamic stability in young adults at different walking velocities on the treadmill.
    Süptitz F; Karamanidis K; Moreno Catalá M; Brüggemann GP
    J Electromyogr Kinesiol; 2012 Apr; 22(2):301-7. PubMed ID: 22240093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influences of high-heeled shoe parameters on gait cycle, center of pressure trajectory, and plantar pressure in young females during treadmill walking.
    Shang J; Geng X; Wang C; Chen L; Zhang C; Huang J; Wang X; Yan A; Ma X
    J Orthop Surg (Hong Kong); 2020; 28(2):2309499020921978. PubMed ID: 32390534
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of textured foot orthotics on static and dynamic postural stability in middle-aged females.
    Wilson ML; Rome K; Hodgson D; Ball P
    Gait Posture; 2008 Jan; 27(1):36-42. PubMed ID: 17267222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bilateral temporal control determines mediolateral margins of stability in symmetric and asymmetric human walking.
    Buurke TJW; Lamoth CJC; van der Woude LHV; Hof AL; den Otter R
    Sci Rep; 2019 Aug; 9(1):12494. PubMed ID: 31467362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic stability in cerebral palsy during walking and running: Predictors and regulation strategies.
    Rethwilm R; Böhm H; Haase M; Perchthaler D; Dussa CU; Federolf P
    Gait Posture; 2021 Feb; 84():329-334. PubMed ID: 33445142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.