These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 24448397)
1. Improved performance and stability of field-effect transistors with polymeric residue-free graphene channel transferred by gold layer. Jang M; Trung TQ; Jung JH; Kim BY; Lee NE Phys Chem Chem Phys; 2014 Mar; 16(9):4098-105. PubMed ID: 24448397 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Suk JW; Lee WH; Lee J; Chou H; Piner RD; Hao Y; Akinwande D; Ruoff RS Nano Lett; 2013 Apr; 13(4):1462-7. PubMed ID: 23510359 [TBL] [Abstract][Full Text] [Related]
3. n- and p-Type modulation of ZnO nanomesh coated graphene field effect transistors. Hui YY; Tai G; Sun Z; Xu Z; Wang N; Yan F; Lau SP Nanoscale; 2012 May; 4(10):3118-22. PubMed ID: 22504661 [TBL] [Abstract][Full Text] [Related]
4. Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Chen TY; Loan PT; Hsu CL; Lee YH; Tse-Wei Wang J; Wei KH; Lin CT; Li LJ Biosens Bioelectron; 2013 Mar; 41():103-9. PubMed ID: 22944023 [TBL] [Abstract][Full Text] [Related]
5. Self-organizing properties of triethylsilylethynyl-anthradithiophene on monolayer graphene electrodes in solution-processed transistors. Jang J; Park J; Nam S; Anthony JE; Kim Y; Kim KS; Kim KS; Hong BH; Park CE Nanoscale; 2013 Nov; 5(22):11094-101. PubMed ID: 24071996 [TBL] [Abstract][Full Text] [Related]
6. Toward High Carrier Mobility and Low Contact Resistance: Laser Cleaning of PMMA Residues on Graphene Surfaces. Jia Y; Gong X; Peng P; Wang Z; Tian Z; Ren L; Fu Y; Zhang H Nanomicro Lett; 2016; 8(4):336-346. PubMed ID: 30460292 [TBL] [Abstract][Full Text] [Related]
7. Graphene-based flexible and stretchable thin film transistors. Yan C; Cho JH; Ahn JH Nanoscale; 2012 Aug; 4(16):4870-82. PubMed ID: 22767356 [TBL] [Abstract][Full Text] [Related]
8. A facile process to achieve hysteresis-free and fully stabilized graphene field-effect transistors. Kim YJ; Lee YG; Jung U; Lee S; Lee SK; Lee BH Nanoscale; 2015 Mar; 7(9):4013-9. PubMed ID: 25672592 [TBL] [Abstract][Full Text] [Related]
9. Interface Electrical Properties of Al Fisichella G; SchilirĂ² E; Di Franco S; Fiorenza P; Lo Nigro R; Roccaforte F; Ravesi S; Giannazzo F ACS Appl Mater Interfaces; 2017 Mar; 9(8):7761-7771. PubMed ID: 28135063 [TBL] [Abstract][Full Text] [Related]
10. Optimized poly(methyl methacrylate)-mediated graphene-transfer process for fabrication of high-quality graphene layer. Park H; Lim C; Lee CJ; Kang J; Kim J; Choi M; Park H Nanotechnology; 2018 Oct; 29(41):415303. PubMed ID: 30028310 [TBL] [Abstract][Full Text] [Related]
11. Improved transfer of graphene for gated Schottky-junction, vertical, organic, field-effect transistors. Lemaitre MG; Donoghue EP; McCarthy MA; Liu B; Tongay S; Gila B; Kumar P; Singh RK; Appleton BR; Rinzler AG ACS Nano; 2012 Oct; 6(10):9095-102. PubMed ID: 23002806 [TBL] [Abstract][Full Text] [Related]
12. Annealing free, clean graphene transfer using alternative polymer scaffolds. Wood JD; Doidge GP; Carrion EA; Koepke JC; Kaitz JA; Datye I; Behnam A; Hewaparakrama J; Aruin B; Chen Y; Dong H; Haasch RT; Lyding JW; Pop E Nanotechnology; 2015 Feb; 26(5):055302. PubMed ID: 25580991 [TBL] [Abstract][Full Text] [Related]
13. Direct growth of doping-density-controlled hexagonal graphene on SiO2 substrate by rapid-heating plasma CVD. Kato T; Hatakeyama R ACS Nano; 2012 Oct; 6(10):8508-15. PubMed ID: 22971147 [TBL] [Abstract][Full Text] [Related]
14. Centimeter-scale high-resolution metrology of entire CVD-grown graphene sheets. Kyle JR; Guvenc A; Wang W; Ghazinejad M; Lin J; Guo S; Ozkan CS; Ozkan M Small; 2011 Sep; 7(18):2598-606. PubMed ID: 21815266 [TBL] [Abstract][Full Text] [Related]
15. Graphene field-effect transistor and its application for electronic sensing. Zhan B; Li C; Yang J; Jenkins G; Huang W; Dong X Small; 2014 Oct; 10(20):4042-65. PubMed ID: 25044546 [TBL] [Abstract][Full Text] [Related]
16. Benzocyclobutene (BCB) Polymer as Amphibious Buffer Layer for Graphene Field-Effect Transistor. Wu Y; Zou J; Huo S; Lu H; Kong Y; Chen T; Wu W; Xu J J Nanosci Nanotechnol; 2015 Aug; 15(8):5706-10. PubMed ID: 26369142 [TBL] [Abstract][Full Text] [Related]
17. Controllable chemical vapor deposition growth of few layer graphene for electronic devices. Wei D; Wu B; Guo Y; Yu G; Liu Y Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220 [TBL] [Abstract][Full Text] [Related]
18. Identifying the mechanisms of p-to-n conversion in unipolar graphene field-effect transistors. Yap RC; Li H; Chow WL; Lu CX; Tay BK; Teo EH Nanotechnology; 2013 May; 24(19):195202. PubMed ID: 23579584 [TBL] [Abstract][Full Text] [Related]
19. Room-temperature negative differential resistance in graphene field effect transistors: experiments and theory. Sharma P; Bernard LS; Bazigos A; Magrez A; Ionescu AM ACS Nano; 2015 Jan; 9(1):620-5. PubMed ID: 25551735 [TBL] [Abstract][Full Text] [Related]
20. Characterization and electrolytic cleaning of poly(methyl methacrylate) residues on transferred chemical vapor deposited graphene. Sun J; Finklea HO; Liu Y Nanotechnology; 2017 Mar; 28(12):125703. PubMed ID: 28163262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]