These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24448450)

  • 21. Metal ion binding sites in a group II intron core.
    Sigel RK; Vaidya A; Pyle AM
    Nat Struct Biol; 2000 Dec; 7(12):1111-6. PubMed ID: 11101891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.
    McNeil BA; Simon DM; Zimmerly S
    Nucleic Acids Res; 2014 Feb; 42(3):1959-69. PubMed ID: 24214997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tight binding of the 5' exon to domain I of a group II self-splicing intron requires completion of the intron active site.
    Costa M; Michel F
    EMBO J; 1999 Feb; 18(4):1025-37. PubMed ID: 10022844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The brace for a growing scaffold: Mss116 protein promotes RNA folding by stabilizing an early assembly intermediate.
    Fedorova O; Pyle AM
    J Mol Biol; 2012 Sep; 422(3):347-65. PubMed ID: 22705286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Splice site selection by intron aI3 of the COX1 gene from Saccharomyces cerevisiae.
    Winter AJ; Groot Koerkamp MJ; Tabak HF
    Nucleic Acids Res; 1992 Aug; 20(15):3897-904. PubMed ID: 1324471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of an In Vitro Chloroplast Splicing System: Sequences Required for Correct pre-mRNA Splicing.
    Inaba-Hasegawa K; Ohmura A; Nomura M; Sugiura M
    Plant Cell Physiol; 2021 Nov; 62(8):1311-1320. PubMed ID: 34180531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA.
    Geese WJ; Waring RB
    J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intron self-complementarity enforces exon inclusion in a yeast pre-mRNA.
    Howe KJ; Ares M
    Proc Natl Acad Sci U S A; 1997 Nov; 94(23):12467-72. PubMed ID: 9356473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome.
    Sontheimer EJ; Gordon PM; Piccirilli JA
    Genes Dev; 1999 Jul; 13(13):1729-41. PubMed ID: 10398685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Principles of ion recognition in RNA: insights from the group II intron structures.
    Marcia M; Pyle AM
    RNA; 2014 Apr; 20(4):516-27. PubMed ID: 24570483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Highly Proliferative Group IIC Intron from Geobacillus stearothermophilus Reveals New Features of Group II Intron Mobility and Splicing.
    Mohr G; Kang SY; Park SK; Qin Y; Grohman J; Yao J; Stamos JL; Lambowitz AM
    J Mol Biol; 2018 Aug; 430(17):2760-2783. PubMed ID: 29913158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excision of the Sinorhizobium meliloti group II intron RmInt1 as circles in vivo.
    Molina-Sánchez MD; Martinez-Abarca F; Toro N
    J Biol Chem; 2006 Sep; 281(39):28737-44. PubMed ID: 16887813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro characterization of the splicing efficiency and fidelity of the RmInt1 group II intron as a means of controlling the dispersion of its host mobile element.
    Chillón I; Molina-Sánchez MD; Fedorova O; García-Rodríguez FM; Martínez-Abarca F; Toro N
    RNA; 2014 Dec; 20(12):2000-10. PubMed ID: 25336586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis for the second step of group II intron splicing.
    Chan RT; Peters JK; Robart AR; Wiryaman T; Rajashankar KR; Toor N
    Nat Commun; 2018 Nov; 9(1):4676. PubMed ID: 30410046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Domains 2 and 3 interact to form critical elements of the group II intron active site.
    Fedorova O; Mitros T; Pyle AM
    J Mol Biol; 2003 Jul; 330(2):197-209. PubMed ID: 12823961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recurrent insertion of 5'-terminal nucleotides and loss of the branchpoint motif in lineages of group II introns inserted in mitochondrial preribosomal RNAs.
    Li CF; Costa M; Bassi G; Lai YK; Michel F
    RNA; 2011 Jul; 17(7):1321-35. PubMed ID: 21613530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Secondary structure is required for 3' splice site recognition in yeast.
    Gahura O; Hammann C; Valentová A; Půta F; Folk P
    Nucleic Acids Res; 2011 Dec; 39(22):9759-67. PubMed ID: 21893588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing adenine rings and backbone linkages using base specific isotope-edited Raman spectroscopy: application to group II intron ribozyme domain V.
    Chen Y; Eldho NV; Dayie TK; Carey PR
    Biochemistry; 2010 Apr; 49(16):3427-35. PubMed ID: 20225830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.