These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24448450)

  • 41. Group II intron RNA-catalyzed recombination of RNA in vitro.
    Mörl M; Schmelzer C
    Nucleic Acids Res; 1990 Nov; 18(22):6545-51. PubMed ID: 1701241
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mapping divalent metal ion binding sites in a group II intron by Mn(2+)- and Zn(2+)-induced site-specific RNA cleavage.
    Hertweck M; Mueller MW
    Eur J Biochem; 2001 Sep; 268(17):4610-20. PubMed ID: 11531997
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNA splicing in higher plant mitochondria: determination of functional elements in group II intron from a chimeric cox II gene in electroporated wheat mitochondria.
    Farré JC; Araya A
    Plant J; 2002 Jan; 29(2):203-13. PubMed ID: 11851920
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction of a group II intron ribonucleoprotein endonuclease with its DNA target site investigated by DNA footprinting and modification interference.
    Singh NN; Lambowitz AM
    J Mol Biol; 2001 Jun; 309(2):361-86. PubMed ID: 11371159
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns.
    Allain FH; Varani G
    Nucleic Acids Res; 1995 Feb; 23(3):341-50. PubMed ID: 7885828
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-splicing of a group II intron in yeast mitochondria: dependence on 5' exon sequences.
    van der Veen R; Arnberg AC; Grivell LA
    EMBO J; 1987 Apr; 6(4):1079-84. PubMed ID: 3297671
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of the yeast DExH-box RNA helicase prp22p with the 3' splice site during the second step of nuclear pre-mRNA splicing.
    McPheeters DS; Schwer B; Muhlenkamp P
    Nucleic Acids Res; 2000 Mar; 28(6):1313-21. PubMed ID: 10684925
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions.
    Thanaraj TA; Clark F
    Nucleic Acids Res; 2001 Jun; 29(12):2581-93. PubMed ID: 11410667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons.
    Puttaraju M; Been MD
    Nucleic Acids Res; 1992 Oct; 20(20):5357-64. PubMed ID: 1279519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cation-induced kinetic heterogeneity of the intron-exon recognition in single group II introns.
    Kowerko D; König SL; Skilandat M; Kruschel D; Hadzic MC; Cardo L; Sigel RK
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3403-8. PubMed ID: 25737541
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determination of the intrinsic affinities of multiple site-specific Mg(2+) ions coordinated to domain 6 of a group II intron ribozyme.
    Erat MC; Sigel RK
    Inorg Chem; 2007 Dec; 46(26):11224-34. PubMed ID: 18044881
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular characterization of both transesterification reactions of the group II intron circularization pathway.
    LaRoche-Johnston F; Monat C; Verreault E; Cousineau B
    Nucleic Acids Res; 2021 Jul; 49(12):6996-7010. PubMed ID: 34157113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Self-splicing of the group I intron from Anabaena pre-tRNA: requirement for base-pairing of the exons in the anticodon stem.
    Zaug AJ; McEvoy MM; Cech TR
    Biochemistry; 1993 Aug; 32(31):7946-53. PubMed ID: 8347600
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Linking the branchpoint helix to a newly found receptor allows lariat formation by a group II intron.
    Li CF; Costa M; Michel F
    EMBO J; 2011 Jun; 30(15):3040-51. PubMed ID: 21712813
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tri-partite assay for studying exon ligation by the ai5gamma group II intron.
    Bar-Shalom A; Moore MJ
    Biochemistry; 2000 Aug; 39(33):10207-18. PubMed ID: 10956010
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain. Thermodynamic analysis and the role of metal ions.
    Caprara MG; Myers CA; Lambowitz AM
    J Mol Biol; 2001 Apr; 308(2):165-90. PubMed ID: 11327760
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans.
    Sargueil B; Tanner NK
    J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mutation of the conserved first nucleotide of a group II intron from yeast mitochondrial DNA reduces the rate but allows accurate splicing.
    Peebles CL; Belcher SM; Zhang M; Dietrich RC; Perlman PS
    J Biol Chem; 1993 Jun; 268(16):11929-38. PubMed ID: 8389367
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differential GC content between exons and introns establishes distinct strategies of splice-site recognition.
    Amit M; Donyo M; Hollander D; Goren A; Kim E; Gelfman S; Lev-Maor G; Burstein D; Schwartz S; Postolsky B; Pupko T; Ast G
    Cell Rep; 2012 May; 1(5):543-56. PubMed ID: 22832277
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Splicing Enhancers at Intron-Exon Borders Participate in Acceptor Splice Sites Recognition.
    Kováčová T; Souček P; Hujová P; Freiberger T; Grodecká L
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32911621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.