These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24448464)

  • 1. Production of hydrogen by electrocatalysis: making the H-H bond by combining protons and hydrides.
    Bullock RM; Appel AM; Helm ML
    Chem Commun (Camb); 2014 Mar; 50(24):3125-43. PubMed ID: 24448464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays.
    Bullock RM; Helm ML
    Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of pendant amines in the breaking and forming of molecular hydrogen catalyzed by nickel complexes.
    Raugei S; Chen S; Ho MH; Ginovska-Pangovska B; Rousseau RJ; Dupuis M; DuBois DL; Bullock RM
    Chemistry; 2012 May; 18(21):6493-506. PubMed ID: 22532421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of molecular electrocatalysts for energy storage.
    DuBois DL
    Inorg Chem; 2014 Apr; 53(8):3935-60. PubMed ID: 24555579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-assisted proton delivery and removal in bio-inspired hydrogen production catalysts.
    Ho MH; O'Hagan M; Dupuis M; DuBois DL; Bullock RM; Shaw WJ; Raugei S
    Dalton Trans; 2015 Jun; 44(24):10969-79. PubMed ID: 25999141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for Production and Oxidation of Hydrogen.
    Raugei S; Helm ML; Hammes-Schiffer S; Appel AM; O'Hagan M; Wiedner ES; Bullock RM
    Inorg Chem; 2016 Jan; 55(2):445-60. PubMed ID: 26653114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moving protons with pendant amines: proton mobility in a nickel catalyst for oxidation of hydrogen.
    O'Hagan M; Shaw WJ; Raugei S; Chen S; Yang JY; Kilgore UJ; DuBois DL; Bullock RM
    J Am Chem Soc; 2011 Sep; 133(36):14301-12. PubMed ID: 21595478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.
    Rakowski DuBois M; DuBois DL
    Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Catalysts with Diphosphine Ligands Containing Pendant Amines.
    Wiedner ES; Appel AM; Raugei S; Shaw WJ; Bullock RM
    Chem Rev; 2022 Jul; 122(14):12427-12474. PubMed ID: 35640056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of oxygen catalyzed by nickel diphosphine complexes with positioned pendant amines.
    Yang JY; Bullock RM; Dougherty WG; Kassel WS; Twamley B; DuBois DL; Rakowski DuBois M
    Dalton Trans; 2010 Mar; 39(12):3001-10. PubMed ID: 20221533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts.
    Horvath S; Fernandez LE; Appel AM; Hammes-Schiffer S
    Inorg Chem; 2013 Apr; 52(7):3643-52. PubMed ID: 23477912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High catalytic rates for hydrogen production using nickel electrocatalysts with seven-membered cyclic diphosphine ligands containing one pendant amine.
    Stewart MP; Ho MH; Wiese S; Lindstrom ML; Thogerson CE; Raugei S; Bullock RM; Helm ML
    J Am Chem Soc; 2013 Apr; 135(16):6033-46. PubMed ID: 23384205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Ni(Et2PCH2NMeCH2PEt2)2]2+ as a functional model for hydrogenases.
    Curtis CJ; Miedaner A; Ciancanelli R; Ellis WW; Noll BC; Rakowski DuBois M; DuBois DL
    Inorg Chem; 2003 Jan; 42(1):216-27. PubMed ID: 12513098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation.
    Wang N; Wang M; Chen L; Sun L
    Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermochemical and mechanistic studies of electrocatalytic hydrogen production by cobalt complexes containing pendant amines.
    Wiedner ES; Appel AM; DuBois DL; Bullock RM
    Inorg Chem; 2013 Dec; 52(24):14391-403. PubMed ID: 24261463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the Role of Water in the H2 Bond Formation by Ni(II)-Based Electrocatalysts.
    Ho MH; Raugei S; Rousseau R; Dupuis M; Bullock RM
    J Chem Theory Comput; 2013 Aug; 9(8):3505-14. PubMed ID: 26584107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic Hydricity of Transition Metal Hydrides.
    Wiedner ES; Chambers MB; Pitman CL; Bullock RM; Miller AJ; Appel AM
    Chem Rev; 2016 Aug; 116(15):8655-92. PubMed ID: 27483171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Design of Molecular Electrocatalysts with Flexible Pendant Amines for Hydrogen Production and Oxidation.
    Fernandez LE; Horvath S; Hammes-Schiffer S
    J Phys Chem Lett; 2013 Feb; 4(3):542-6. PubMed ID: 26281752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimal proton channel enables H2 oxidation and production with a water-soluble nickel-based catalyst.
    Dutta A; Lense S; Hou J; Engelhard MH; Roberts JA; Shaw WJ
    J Am Chem Soc; 2013 Dec; 135(49):18490-6. PubMed ID: 24206187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renewable Formate from C-H Bond Formation with CO
    Loewen ND; Neelakantan TV; Berben LA
    Acc Chem Res; 2017 Sep; 50(9):2362-2370. PubMed ID: 28836757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.