BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24448631)

  • 1. Improving the performance of protein kinase identification via high dimensional protein-protein interactions and substrate structure data.
    Xu X; Li A; Zou L; Shen Y; Fan W; Wang M
    Mol Biosyst; 2014 Mar; 10(3):694-702. PubMed ID: 24448631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of protein kinase-specific phosphorylation sites in hierarchical structure using functional information and random forest.
    Fan W; Xu X; Shen Y; Feng H; Li A; Wang M
    Amino Acids; 2014 Apr; 46(4):1069-78. PubMed ID: 24452754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of kinase-substrate relations based on heterogeneous networks.
    Li H; Wang M; Xu X
    J Bioinform Comput Biol; 2015 Dec; 13(6):1542003. PubMed ID: 26608750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Interactions Between Kinases and Substrates Based on Protein-Protein Interaction Network.
    Chen Q; Deng C; Lan W; Liu Z; Zheng R; Liu J; Wang J
    J Comput Biol; 2019 Aug; 26(8):836-845. PubMed ID: 30990327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Phosphosites to Kinases.
    Munk S; Refsgaard JC; Olsen JV; Jensen LJ
    Methods Mol Biol; 2016; 1355():307-21. PubMed ID: 26584935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PhosphoPOINT: a comprehensive human kinase interactome and phospho-protein database.
    Yang CY; Chang CH; Yu YL; Lin TC; Lee SA; Yen CC; Yang JM; Lai JM; Hong YR; Tseng TL; Chao KM; Huang CY
    Bioinformatics; 2008 Aug; 24(16):i14-20. PubMed ID: 18689816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinase Identification with Supervised Laplacian Regularized Least Squares.
    Li A; Xu X; Zhang H; Wang M
    PLoS One; 2015; 10(10):e0139676. PubMed ID: 26448296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection.
    Song J; Wang H; Wang J; Leier A; Marquez-Lago T; Yang B; Zhang Z; Akutsu T; Webb GI; Daly RJ
    Sci Rep; 2017 Jul; 7(1):6862. PubMed ID: 28761071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteome sequence analysis and significance: mining association patterns around phosphorylation sites utilizing MAPRes.
    Ahmad I; Mehmood A; Khurshid A; Qazi WM; Hoessli DC; Walker-Nasir E; Shakoori AR;
    J Cell Biochem; 2009 Sep; 108(1):64-74. PubMed ID: 19544398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins.
    Diella F; Cameron S; Gemünd C; Linding R; Via A; Kuster B; Sicheritz-Pontén T; Blom N; Gibson TJ
    BMC Bioinformatics; 2004 Jun; 5():79. PubMed ID: 15212693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Phosphorylation Site-Kinase Network-Based Method for the Accurate Prediction of Kinase-Substrate Relationships.
    Wang M; Wang T; Wang B; Liu Y; Li A
    Biomed Res Int; 2017; 2017():1826496. PubMed ID: 29312990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of kinase-specific phosphorylation sites using conditional random fields.
    Dang TH; Van Leemput K; Verschoren A; Laukens K
    Bioinformatics; 2008 Dec; 24(24):2857-64. PubMed ID: 18940828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.
    Bretaña NA; Lu CT; Chiang CY; Su MG; Huang KY; Lee TY; Weng SL
    PLoS One; 2012; 7(7):e40694. PubMed ID: 22844408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NetworKIN: a resource for exploring cellular phosphorylation networks.
    Linding R; Jensen LJ; Pasculescu A; Olhovsky M; Colwill K; Bork P; Yaffe MB; Pawson T
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D695-9. PubMed ID: 17981841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PhosphoSVM: prediction of phosphorylation sites by integrating various protein sequence attributes with a support vector machine.
    Dou Y; Yao B; Zhang C
    Amino Acids; 2014 Jun; 46(6):1459-69. PubMed ID: 24623121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for the identification of kinase substrates using analog-sensitive kinases.
    Koch A; Hauf S
    Eur J Cell Biol; 2010; 89(2-3):184-93. PubMed ID: 20061049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying protein-kinase-specific phosphorylation sites based on the Bagging-AdaBoost ensemble approach.
    Yu Z; Deng Z; Wong HS; Tan L
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):132-43. PubMed ID: 20215087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GPS: a novel group-based phosphorylation predicting and scoring method.
    Zhou FF; Xue Y; Chen GL; Yao X
    Biochem Biophys Res Commun; 2004 Dec; 325(4):1443-8. PubMed ID: 15555589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PKIS: computational identification of protein kinases for experimentally discovered protein phosphorylation sites.
    Zou L; Wang M; Shen Y; Liao J; Li A; Wang M
    BMC Bioinformatics; 2013 Aug; 14():247. PubMed ID: 23941207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies.
    Domanova W; Krycer J; Chaudhuri R; Yang P; Vafaee F; Fazakerley D; Humphrey S; James D; Kuncic Z
    PLoS One; 2016; 11(6):e0157763. PubMed ID: 27336693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.