These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 2444866)

  • 1. Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria.
    Dimroth P
    Microbiol Rev; 1987 Sep; 51(3):320-40. PubMed ID: 2444866
    [No Abstract]   [Full Text] [Related]  

  • 2. Decarboxylation and transport.
    Dimroth P
    Biosci Rep; 1982 Nov; 2(11):849-60. PubMed ID: 6760913
    [No Abstract]   [Full Text] [Related]  

  • 3. Biotin-dependent decarboxylases as energy transducing systems.
    Dimroth P
    Ann N Y Acad Sci; 1985; 447():72-85. PubMed ID: 3893285
    [No Abstract]   [Full Text] [Related]  

  • 4. A biotin-dependent sodium pump: glutaconyl-CoA decarboxylase from Acidaminococcus fermentans.
    Buckel W; Semmler R
    FEBS Lett; 1982 Nov; 148(1):35-8. PubMed ID: 6293874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The generation of an electrochemical gradient of sodium ions upon decarboxylation of oxaloacetate by the membrane-bound and Na+-activated oxaloacetate decarboxylase from Klebsiella aerogenes.
    Dimroth P
    Eur J Biochem; 1982 Jan; 121(2):443-9. PubMed ID: 7037396
    [No Abstract]   [Full Text] [Related]  

  • 6. Crystal structure of the carboxyltransferase subunit of the bacterial sodium ion pump glutaconyl-coenzyme A decarboxylase.
    Wendt KS; Schall I; Huber R; Buckel W; Jacob U
    EMBO J; 2003 Jul; 22(14):3493-502. PubMed ID: 12853465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium ion-translocating decarboxylases.
    Buckel W
    Biochim Biophys Acta; 2001 May; 1505(1):15-27. PubMed ID: 11248185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of the chemical energy of methylmalonyl-CoA decarboxylation into a Na+ gradient.
    Hilpert W; Dimroth P
    Nature; 1982 Apr; 296(5857):584-5. PubMed ID: 7070502
    [No Abstract]   [Full Text] [Related]  

  • 9. Mechanisms of sodium transport in bacteria.
    Dimroth P
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):465-77. PubMed ID: 1970650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyruvic decarboxylase and acetoin formation in Athiorhodaceae.
    Qadri SM; Hoare DS
    Can J Microbiol; 1973 Sep; 19(9):1137-43. PubMed ID: 4754749
    [No Abstract]   [Full Text] [Related]  

  • 11. Energy conservation in fermentative glutarate degradation by the bacterial strain WoG13.
    Matthies C; Schink B
    FEMS Microbiol Lett; 1992 Dec; 100(1-3):221-5. PubMed ID: 1335946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate stereochemistry of the biotin-dependent sodium pump glutaconyl-CoA decarboxylase from Acidaminococcus fermentans.
    Buckel W
    Eur J Biochem; 1986 Apr; 156(2):259-63. PubMed ID: 2422028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biotin-dependent sodium ion pump glutaconyl-CoA decarboxylase from Fusobacterium nucleatum (subsp. nucleatum). Comparison with the glutaconyl-CoA decarboxylases from gram-positive bacteria.
    Beatrix B; Bendrat K; Rospert S; Buckel W
    Arch Microbiol; 1990; 154(4):362-9. PubMed ID: 2244788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial sodium ion-coupled energetics.
    Dimroth P
    Antonie Van Leeuwenhoek; 1994; 65(4):381-95. PubMed ID: 7832594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sodium pump glutaconyl-CoA decarboxylase from Acidaminococcus fermentans. Specific cleavage by n-alkanols.
    Buckel W; Liedtke H
    Eur J Biochem; 1986 Apr; 156(2):251-7. PubMed ID: 2422027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural insights into sodium transport by the oxaloacetate decarboxylase sodium pump.
    Xu X; Shi H; Gong X; Chen P; Gao Y; Zhang X; Xiang S
    Elife; 2020 May; 9():. PubMed ID: 32459174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in bacterial ion transport.
    Rosen BP
    Annu Rev Microbiol; 1986; 40():263-86. PubMed ID: 2430517
    [No Abstract]   [Full Text] [Related]  

  • 18. [Use of the ER1 65M densitometer for quantitative evaluation of electrophoretograms during the study of amino acid decarboxylases in microorganisms].
    ZakrevskiÄ­ VI; Galaev IuV
    Lab Delo; 1979; (11):663-5. PubMed ID: 92601
    [No Abstract]   [Full Text] [Related]  

  • 19. Rapid methods for determining decarboxylase activity: ornithine and lysine decarboxylases.
    Goldschmidt MC; Lockhart BM; Perry K
    Appl Microbiol; 1971 Sep; 22(3):344-9. PubMed ID: 5119202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria.
    Dimroth P; Schink B
    Arch Microbiol; 1998 Aug; 170(2):69-77. PubMed ID: 9683642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.