BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24448829)

  • 1. Microstructure characterization of a decellularized vocal fold scaffold for laryngeal tissue engineering.
    Tse JR; Long JL
    Laryngoscope; 2014 Aug; 124(8):E326-31. PubMed ID: 24448829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derivation and characterization of porcine vocal fold extracellular matrix scaffold.
    Wrona EA; Peng R; Born H; Amin MR; Branski RC; Freytes DO
    Laryngoscope; 2016 Apr; 126(4):928-35. PubMed ID: 26371887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Matrix composition and mechanics of decellularized lung scaffolds.
    Petersen TH; Calle EA; Colehour MB; Niklason LE
    Cells Tissues Organs; 2012; 195(3):222-31. PubMed ID: 21502745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Characterization of vocal fold regeneration after adipose-derived mesenchymal stem cells implanting].
    Hu R; Xu W; Fan EZ
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2010 Sep; 45(9):723-8. PubMed ID: 21092668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liver-derived extracellular matrix as a biologic scaffold for acute vocal fold repair in a canine model.
    Gilbert TW; Agrawal V; Gilbert MR; Povirk KM; Badylak SF; Rosen CA
    Laryngoscope; 2009 Sep; 119(9):1856-63. PubMed ID: 19572393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decellularization of porcine carotid arteries using low-concentration sodium dodecyl sulfate.
    Cheng J; Li J; Cai Z; Xing Y; Wang C; Guo L; Gu Y
    Int J Artif Organs; 2021 Jul; 44(7):497-508. PubMed ID: 33222583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention of Human-Induced Pluripotent Stem Cells (hiPS) With Injectable HA Hydrogels for Vocal Fold Engineering.
    Imaizumi M; Li-Jessen NY; Sato Y; Yang DT; Thibeault SL
    Ann Otol Rhinol Laryngol; 2017 Apr; 126(4):304-314. PubMed ID: 28290232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation.
    Xing Q; Yates K; Tahtinen M; Shearier E; Qian Z; Zhao F
    Tissue Eng Part C Methods; 2015 Jan; 21(1):77-87. PubMed ID: 24866751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of decellularized aortic scaffold for regenerative medicine using Sapindus mukorossi fruit pericarp extract.
    Goyal RP; Khangembam SD; Gangwar AK; Verma MK; Kumar N; Ahmed P; Yadav VK; Singh Y; Verma RK
    Micron; 2021 Mar; 142():102997. PubMed ID: 33388519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of Young's modulus of vocal folds by indentation.
    Chhetri DK; Zhang Z; Neubauer J
    J Voice; 2011 Jan; 25(1):1-7. PubMed ID: 20171829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of matrix composition, microstructure, and viscoelasticity on the behaviors of vocal fold fibroblasts cultured in three-dimensional hydrogel networks.
    Farran AJ; Teller SS; Jha AK; Jiao T; Hule RA; Clifton RJ; Pochan DP; Duncan RL; Jia X
    Tissue Eng Part A; 2010 Apr; 16(4):1247-61. PubMed ID: 20064012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and mechanical characterization of decellularized scaffolds for an active aortic graft.
    Giovanniello F; Asgari M; Breslavsky ID; Franchini G; Holzapfel GA; Tabrizian M; Amabili M
    Acta Biomater; 2023 Apr; 160():59-72. PubMed ID: 36792047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional testing of a tissue-engineered vocal fold cover replacement.
    Long JL; Neubauer J; Zhang Z; Zuk P; Berke GS; Chhetri DK
    Otolaryngol Head Neck Surg; 2010 Mar; 142(3):438-40. PubMed ID: 20172395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration.
    Li L; Stiadle JM; Lau HK; Zerdoum AB; Jia X; Thibeault SL; Kiick KL
    Biomaterials; 2016 Nov; 108():91-110. PubMed ID: 27619243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile fiber-reinforced hydrogels to mimic the microstructure and mechanics of human vocal-fold upper layers.
    Ferri-Angulo D; Yousefi-Mashouf H; Michel M; McLeer A; Orgéas L; Bailly L; Sohier J
    Acta Biomater; 2023 Dec; 172():92-105. PubMed ID: 37748548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of decellularized rooster comb as a scaffold for tissue engineering applications.
    Inci I
    Tissue Cell; 2021 Dec; 73():101614. PubMed ID: 34390891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-Engineered Vocal Fold Mucosa Implantation in Rabbits.
    Shiba TL; Hardy J; Luegmair G; Zhang Z; Long JL
    Otolaryngol Head Neck Surg; 2016 Apr; 154(4):679-88. PubMed ID: 26956198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of decellularized chicken skin as a tissue engineering scaffold.
    Inci I
    Biotechnol Appl Biochem; 2022 Oct; 69(5):2257-2266. PubMed ID: 35396883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perfusion-Decellularized Larynx as a Natural 3D Scaffold in a Rabbit Model.
    Park JO; Park HY; Shin SC; Lee DH; Lee BJ
    ORL J Otorhinolaryngol Relat Spec; 2022; 84(1):81-88. PubMed ID: 34736264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The human umbilical vein with Wharton's jelly as an allogeneic, acellular construct for vocal fold restoration.
    Chan RW; Rodriguez ML; McFetridge PS
    Tissue Eng Part A; 2009 Nov; 15(11):3537-46. PubMed ID: 19456236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.