These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24449007)

  • 1. Sensory electrical stimulation improves foot placement during targeted stepping post-stroke.
    Walker ER; Hyngstrom AS; Schmit BD
    Exp Brain Res; 2014 Apr; 232(4):1137-43. PubMed ID: 24449007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cutaneous electrical stimulation may enhance sensorimotor recovery in chronic stroke.
    Peurala SH; Pitkänen K; Sivenius J; Tarkka IM
    Clin Rehabil; 2002 Nov; 16(7):709-16. PubMed ID: 12428819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered foot placement modulation with somatosensory stimulation in people with chronic stroke.
    Schonhaut EB; Howard KE; Jacobs CJ; Knight HL; Chesnutt AN; Dean JC
    J Biomech; 2024 Mar; 166():112043. PubMed ID: 38484654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hip abduction and adduction accuracy on post-stroke gait.
    Dean JC; Embry AE; Stimpson KH; Perry LA; Kautz SA
    Clin Biomech (Bristol, Avon); 2017 May; 44():14-20. PubMed ID: 28285142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-stroke deficits in mediolateral foot placement accuracy depend on the prescribed walking task.
    Stimpson KH; Embry AE; Dean JC
    J Biomech; 2021 Nov; 128():110738. PubMed ID: 34509909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow and faster post-stroke walkers have a different trunk progression and braking impulse during gait.
    Duclos NC; Duclos C; Nadeau S
    Gait Posture; 2019 Feb; 68():483-487. PubMed ID: 30616177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A functional tracking task to assess frontal plane motor control in post stroke gait.
    Reissman ME; Dhaher YY
    J Biomech; 2015 Jul; 48(10):1782-8. PubMed ID: 26037229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benefits of implanted peroneal functional electrical stimulation for continual gait adaptations in people with 'drop foot' due to chronic stroke.
    Berenpas F; Geurts A; Keijsers N; Weerdesteyn V
    Hum Mov Sci; 2022 Jun; 83():102953. PubMed ID: 35512467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke.
    Wu CW; Seo HJ; Cohen LG
    Arch Phys Med Rehabil; 2006 Mar; 87(3):351-7. PubMed ID: 16500168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical gait characteristics of naturally occurring unsuccessful foot clearance during swing in individuals with chronic stroke.
    Burpee JL; Lewek MD
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1102-7. PubMed ID: 26371855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intralimb gait coordination of individuals with stroke using vector coding.
    Celestino ML; van Emmerik R; Barela JA; Gama GL; Barela AMF
    Hum Mov Sci; 2019 Dec; 68():102522. PubMed ID: 31707313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ankle-foot orthoses on mediolateral foot-placement ability during post-stroke gait.
    Zissimopoulos A; Fatone S; Gard S
    Prosthet Orthot Int; 2015 Oct; 39(5):372-9. PubMed ID: 24878846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds.
    Chen G; Patten C; Kothari DH; Zajac FE
    Gait Posture; 2005 Aug; 22(1):51-6. PubMed ID: 15996592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paretic versus non-paretic stepping responses following pelvis perturbations in walking chronic-stage stroke survivors.
    Haarman JAM; Vlutters M; Olde Keizer RACM; van Asseldonk EHF; Buurke JH; Reenalda J; Rietman JS; van der Kooij H
    J Neuroeng Rehabil; 2017 Oct; 14(1):106. PubMed ID: 29029646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foot-placement accuracy during planned and reactive target stepping during walking in stroke survivors and healthy adults.
    van der Veen SM; Hammerbeck U; Hollands KL
    Gait Posture; 2020 Sep; 81():261-267. PubMed ID: 32846357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of lateral weight transfer is associated with walking speed in individuals post-stroke.
    Hsiao H; Gray VL; Creath RA; Binder-Macleod SA; Rogers MW
    J Biomech; 2017 Jul; 60():72-78. PubMed ID: 28687151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atypical cortical drive during activation of the paretic and nonparetic tibialis anterior is related to gait deficits in chronic stroke.
    Palmer JA; Needle AR; Pohlig RT; Binder-Macleod SA
    Clin Neurophysiol; 2016 Jan; 127(1):716-723. PubMed ID: 26142877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How accuracy of foot-placement is affected by the size of the base of support and crutch support in stroke survivors and healthy adults.
    van der Veen SM; Hammerbeck U; Hollands KL
    Gait Posture; 2020 Feb; 76():224-230. PubMed ID: 31874454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foot placement in a body reference frame during walking and its relationship to hemiparetic walking performance.
    Balasubramanian CK; Neptune RR; Kautz SA
    Clin Biomech (Bristol, Avon); 2010 Jun; 25(5):483-90. PubMed ID: 20193972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in lower limb biomechanics when following floor-projected foot placement visual cues for gait rehabilitation.
    Edd SN; Vida Martins N; Bennour S; Ulrich B; Jolles BM; Favre J
    Gait Posture; 2020 Mar; 77():293-299. PubMed ID: 32120246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.