These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24449051)

  • 1. Design and mechanical properties of a novel cerebral flow diverter stent.
    Ma J; You Z; Byrne J; Rizkallah RR
    Ann Biomed Eng; 2014 May; 42(5):960-70. PubMed ID: 24449051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new flow diverter stent for direct treatment of intracranial aneurysm.
    Ma J; You Z; Peach T; Byrne J; Rizkallah RR
    J Biomech; 2015 Dec; 48(16):4206-13. PubMed ID: 26592434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical investigations of the mechanical properties of braided vascular stents.
    Fu W; Xia Q; Yan R; Qiao A
    Biomed Mater Eng; 2018; 29(1):81-94. PubMed ID: 29254075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between geometrical parameters and mechanical properties for a helical braided flow diverter stent.
    Suzuki T; Takao H; Fujimura S; Dahmani C; Ishibashi T; Mamori H; Fukushima N; Murayama Y; Yamamoto M
    Technol Health Care; 2017 Aug; 25(4):611-623. PubMed ID: 28506004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Silk flow-diverter stent for endovascular treatment of intracranial aneurysms.
    Alghamdi F; Morais R; Scillia P; Lubicz B
    Expert Rev Med Devices; 2015; 12(6):753-62. PubMed ID: 26415045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-center experience with the Neuroform stent for endovascular treatment of wide-necked intracranial aneurysms.
    Wajnberg E; de Souza JM; Marchiori E; Gasparetto EL
    Surg Neurol; 2009 Dec; 72(6):612-9. PubMed ID: 19604557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of helical braided flow diverter stents based on hemodynamic performance and mechanical properties.
    Suzuki T; Takao H; Fujimura S; Dahmani C; Ishibashi T; Mamori H; Fukushima N; Yamamoto M; Murayama Y
    J Neurointerv Surg; 2017 Oct; 9(10):999-1005. PubMed ID: 27646987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of ruptured blood blister-like aneurysms with flow diverter SILK stents.
    Aydin K; Arat A; Sencer S; Hakyemez B; Barburoglu M; Sencer A; İzgi N
    J Neurointerv Surg; 2015 Mar; 7(3):202-9. PubMed ID: 24491271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic Resistance of Intracranial Flow-Diverter Stents: Measurement Description and Data Evaluation.
    Csippa B; Gyürki D; Závodszky G; Szikora I; Paál G
    Cardiovasc Eng Technol; 2020 Feb; 11(1):1-13. PubMed ID: 31797262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IS FlowMap, a novel tool to examine blood flow changes induced by flow diverter stent treatment: initial experiences with pipeline cases.
    Chien A; Viñuela F
    J Neurointerv Surg; 2013 Nov; 5 Suppl 3():iii43-7. PubMed ID: 23390037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New variable porosity flow diverter (VPOD) stent design for treatment of cerebrovascular aneurysms.
    Suri H; Ionita CN; Baier RE; Rudin S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1105-8. PubMed ID: 22254507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra-aneurysmal hemodynamic alterations by a self-expandable intracranial stent and flow diversion stent: high intra-aneurysmal pressure remains regardless of flow velocity reduction.
    Shobayashi Y; Tateshima S; Kakizaki R; Sudo R; Tanishita K; Viñuela F
    J Neurointerv Surg; 2013 Nov; 5 Suppl 3():iii38-42. PubMed ID: 23048176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow Diversion Technologies in Evolution: A Review of the First Two Generations of Flow Diversion Devices.
    Fargen KM; Hoh BL
    World Neurosurg; 2015 Aug; 84(2):254-6. PubMed ID: 25827045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Mechanical Properties and Testing of Nitinol Stents in Cerebral Aneurysm Simulation Models.
    Nam HG; Yoo CM; Baek SM; Kim HK; Shin JH; Hwang MH; Jo GE; Kim KS; Cho JH; Lee SH; Kim HC; Lim CH; Choi H; Sun K
    Artif Organs; 2015 Dec; 39(12):E213-26. PubMed ID: 26416549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroform stent-assisted coil embolization of wide-neck intracranial aneurysms: strategies in stent deployment and midterm follow-up.
    Biondi A; Janardhan V; Katz JM; Salvaggio K; Riina HA; Gobin YP
    Neurosurgery; 2007 Sep; 61(3):460-8; discussion 468-9. PubMed ID: 17881956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical design of an intracranial stent for treating cerebral aneurysms.
    Shobayashi Y; Tanoue T; Tateshima S; Tanishita K
    Med Eng Phys; 2010 Nov; 32(9):1015-24. PubMed ID: 20675176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison among different high porosity stent configurations: hemodynamic effects of treatment in a large cerebral aneurysm.
    Roszelle BN; Nair P; Gonzalez LF; Haithem Babiker M; Ryan J; Frakes D
    J Biomech Eng; 2014 Feb; 136(2):021013. PubMed ID: 24337100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructured Thin Film Nitinol for a Neurovascular Flow-Diverter.
    Chen Y; Howe C; Lee Y; Cheon S; Yeo WH; Chun Y
    Sci Rep; 2016 Mar; 6():23698. PubMed ID: 27009500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Our capricious vessels: The influence of stent design and vessel geometry on the mechanics of intracranial aneurysm stent deployment.
    De Bock S; Iannaccone F; De Santis G; De Beule M; Mortier P; Verhegghe B; Segers P
    J Biomech; 2012 May; 45(8):1353-9. PubMed ID: 22483228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porosity dependency of an optimized stent design for an intracranial aneurysm.
    Anzai H; Yoshida Y; Sugiyama S; Endo H; Matsumoto Y; Ohta M
    Technol Health Care; 2015; 23(5):547-56. PubMed ID: 26410116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.