BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 24449148)

  • 1. Helical propensity in an intrinsically disordered protein accelerates ligand binding.
    Iešmantavičius V; Dogan J; Jemth P; Teilum K; Kjaergaard M
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1548-51. PubMed ID: 24449148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A folded excited state of ligand-free nuclear coactivator binding domain (NCBD) underlies plasticity in ligand recognition.
    Kjaergaard M; Andersen L; Nielsen LD; Teilum K
    Biochemistry; 2013 Mar; 52(10):1686-93. PubMed ID: 23373423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic folding of two intrinsically disordered proteins: searching for conformational selection.
    Ganguly D; Zhang W; Chen J
    Mol Biosyst; 2012 Jan; 8(1):198-209. PubMed ID: 21766125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residual Structure Accelerates Binding of Intrinsically Disordered ACTR by Promoting Efficient Folding upon Encounter.
    Liu X; Chen J; Chen J
    J Mol Biol; 2019 Jan; 431(2):422-432. PubMed ID: 30528464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule studies of intrinsically disordered proteins using solid-state nanopores.
    Japrung D; Dogan J; Freedman KJ; Nadzeyka A; Bauerdick S; Albrecht T; Kim MJ; Jemth P; Edel JB
    Anal Chem; 2013 Feb; 85(4):2449-56. PubMed ID: 23327569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structurally heterogeneous transition state underlies coupled binding and folding of disordered proteins.
    Karlsson E; Andersson E; Dogan J; Gianni S; Jemth P; Camilloni C
    J Biol Chem; 2019 Jan; 294(4):1230-1239. PubMed ID: 30514761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding.
    Arai M; Sugase K; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9614-9. PubMed ID: 26195786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding propensity of intrinsically disordered proteins by osmotic stress.
    Mansouri AL; Grese LN; Rowe EL; Pino JC; Chennubhotla SC; Ramanathan A; O'Neill HM; Berthelier V; Stanley CB
    Mol Biosyst; 2016 Nov; 12(12):3695-3701. PubMed ID: 27752679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft interactions and volume exclusion by polymeric crowders can stabilize or destabilize transient structure in disordered proteins depending on polymer concentration.
    Rusinga FI; Weis DD
    Proteins; 2017 Aug; 85(8):1468-1479. PubMed ID: 28425679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of the intrinsic helix propensity of an intrinsically disordered protein reveals long-range helix-helix interactions.
    Iešmantavičius V; Jensen MR; Ozenne V; Blackledge M; Poulsen FM; Kjaergaard M
    J Am Chem Soc; 2013 Jul; 135(27):10155-63. PubMed ID: 23758617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the transition state for a binding reaction between ancient intrinsically disordered proteins.
    Karlsson E; Paissoni C; Erkelens AM; Tehranizadeh ZA; Sorgenfrei FA; Andersson E; Ye W; Camilloni C; Jemth P
    J Biol Chem; 2020 Dec; 295(51):17698-17712. PubMed ID: 33454008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of coupled folding and binding of an intrinsically disordered protein.
    Sugase K; Dyson HJ; Wright PE
    Nature; 2007 Jun; 447(7147):1021-5. PubMed ID: 17522630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural divergence is more extensive than sequence divergence for a family of intrinsically disordered proteins.
    Borcherds W; Kashtanov S; Wu H; Daughdrill GW
    Proteins; 2013 Oct; 81(10):1686-98. PubMed ID: 23606624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying Protection in Disordered Proteins Using Millisecond Hydrogen Exchange-Mass Spectrometry and Peptic Reference Peptides.
    Al-Naqshabandi MA; Weis DD
    Biochemistry; 2017 Aug; 56(31):4064-4072. PubMed ID: 28675294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residual structures, conformational fluctuations, and electrostatic interactions in the synergistic folding of two intrinsically disordered proteins.
    Zhang W; Ganguly D; Chen J
    PLoS Comput Biol; 2012 Jan; 8(1):e1002353. PubMed ID: 22253588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping unstructured regions and synergistic folding in intrinsically disordered proteins with amide H/D exchange mass spectrometry.
    Keppel TR; Howard BA; Weis DD
    Biochemistry; 2011 Oct; 50(40):8722-32. PubMed ID: 21894929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast association and slow transitions in the interaction between two intrinsically disordered protein domains.
    Dogan J; Schmidt T; Mu X; Engström Å; Jemth P
    J Biol Chem; 2012 Oct; 287(41):34316-24. PubMed ID: 22915588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Insights into the Interaction of the Intrinsically Disordered Co-activator TIF2 with Retinoic Acid Receptor Heterodimer (RXR/RAR).
    Senicourt L; le Maire A; Allemand F; Carvalho JE; Guee L; Germain P; Schubert M; Bernadó P; Bourguet W; Sibille N
    J Mol Biol; 2021 Apr; 433(9):166899. PubMed ID: 33647291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins.
    Jemth P; Karlsson E; Vögeli B; Guzovsky B; Andersson E; Hultqvist G; Dogan J; Güntert P; Riek R; Chi CN
    Sci Adv; 2018 Oct; 4(10):eaau4130. PubMed ID: 30397651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP.
    Kjaergaard M; Teilum K; Poulsen FM
    Proc Natl Acad Sci U S A; 2010 Jul; 107(28):12535-40. PubMed ID: 20616042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.