These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Balderman SR; Li AJ; Hoffman CM; Frisch BJ; Goodman AN; LaMere MW; Georger MA; Evans AG; Liesveld JL; Becker MW; Calvi LM Blood; 2016 Feb; 127(5):616-25. PubMed ID: 26637787 [TBL] [Abstract][Full Text] [Related]
8. Loss of Toll-like receptor 2 results in accelerated leukemogenesis in the Monlish DA; Bhatt ST; Duncavage EJ; Greenberg ZJ; Keller JL; Romine MP; Yang W; Aplan PD; Walter MJ; Schuettpelz LG Blood; 2018 Mar; 131(9):1032-1035. PubMed ID: 29358180 [No Abstract] [Full Text] [Related]
9. SETD2 deficiency accelerates MDS-associated leukemogenesis via S100a9 in NHD13 mice and predicts poor prognosis in MDS. Chen BY; Song J; Hu CL; Chen SB; Zhang Q; Xu CH; Wu JC; Hou D; Sun M; Zhang YL; Liu N; Yu PC; Liu P; Zong LJ; Zhang JY; Dai RF; Lan F; Huang QH; Zhang SJ; Nimer SD; Chen Z; Chen SJ; Sun XJ; Wang L Blood; 2020 Jun; 135(25):2271-2285. PubMed ID: 32202636 [TBL] [Abstract][Full Text] [Related]
10. Loss of p53 accelerates the complications of myelodysplastic syndrome in a NUP98-HOXD13-driven mouse model. Xu H; Menendez S; Schlegelberger B; Bae N; Aplan PD; Göhring G; Deblasio TR; Nimer SD Blood; 2012 Oct; 120(15):3089-97. PubMed ID: 22927245 [TBL] [Abstract][Full Text] [Related]
11. Progressive genomic instability in the Nup98-HoxD13 model of MDS correlates with loss of the PIG-A gene product. Byrne M; Bennett RL; Cheng X; May WS Neoplasia; 2014 Aug; 16(8):627-33. PubMed ID: 25220590 [TBL] [Abstract][Full Text] [Related]
13. Myeloid-specific inactivation of p15Ink4b results in monocytosis and predisposition to myeloid leukemia. Bies J; Sramko M; Fares J; Rosu-Myles M; Zhang S; Koller R; Wolff L Blood; 2010 Aug; 116(6):979-87. PubMed ID: 20457873 [TBL] [Abstract][Full Text] [Related]
14. Methylation status of the p15INK4B gene in hematopoietic progenitors and peripheral blood cells in myelodysplastic syndromes. Aoki E; Uchida T; Ohashi H; Nagai H; Murase T; Ichikawa A; Yamao K; Hotta T; Kinoshita T; Saito H; Murate T Leukemia; 2000 Apr; 14(4):586-93. PubMed ID: 10764143 [TBL] [Abstract][Full Text] [Related]
15. Heterogenous fusion transcripts involving the NUP98 gene and HOXD13 gene activation in a case of acute myeloid leukemia with the t(2;11)(q31;p15) translocation. Arai Y; Kyo T; Miwa H; Arai K; Kamada N; Kita K; Ohki M Leukemia; 2000 Sep; 14(9):1621-9. PubMed ID: 10995009 [TBL] [Abstract][Full Text] [Related]
19. Functional analysis of the NUP98-CCDC28A fusion protein. Petit A; Ragu C; Soler G; Ottolenghi C; Schluth C; Radford-Weiss I; Schneider-Maunoury S; Callebaut I; Dastugue N; Drabkin HA; Bernard OA; Romana S; Penard-Lacronique V Haematologica; 2012 Mar; 97(3):379-87. PubMed ID: 22058212 [TBL] [Abstract][Full Text] [Related]
20. Fusion of the NUP98 gene and the homeobox gene HOXC13 in acute myeloid leukemia with t(11;12)(p15;q13). Panagopoulos I; Isaksson M; Billström R; Strömbeck B; Mitelman F; Johansson B Genes Chromosomes Cancer; 2003 Jan; 36(1):107-12. PubMed ID: 12461755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]