BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 24449523)

  • 1. Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system.
    Wang L; Palacios-Padrós A; Kirchgeorg R; Tighineanu A; Schmuki P
    ChemSusChem; 2014 Feb; 7(2):421-4. PubMed ID: 24449523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sn-doped hematite nanostructures for photoelectrochemical water splitting.
    Ling Y; Wang G; Wheeler DA; Zhang JZ; Li Y
    Nano Lett; 2011 May; 11(5):2119-25. PubMed ID: 21476581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Cathodes of Cupric Oxide Nanosheets Coated onto Macroporous Antimony-Doped Tin Oxide for Photoelectrochemical Water Splitting.
    Wang XD; Xu YF; Chen BX; Zhou N; Chen HY; Kuang DB; Su CY
    ChemSusChem; 2016 Oct; 9(20):3012-3018. PubMed ID: 27704701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron collection in host-guest nanostructured hematite photoanodes for water splitting: the influence of scaffold doping density.
    Kondofersky I; Dunn HK; Müller A; Mandlmeier B; Feckl JM; Fattakhova-Rohlfing D; Scheu C; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4623-30. PubMed ID: 25562687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity.
    Lee CY; Wang L; Kado Y; Killian MS; Schmuki P
    ChemSusChem; 2014 Mar; 7(3):934-40. PubMed ID: 24677770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays.
    Wang L; Zhou X; Nguyen NT; Schmuki P
    ChemSusChem; 2015 Feb; 8(4):618-22. PubMed ID: 25581403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite.
    Sun Y; Chemelewski WD; Berglund SP; Li C; He H; Shi G; Mullins CB
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5494-9. PubMed ID: 24665964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.
    Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB
    ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the water splitting efficiency of Sn-doped hematite nanoflakes by flame annealing.
    Wang L; Lee CY; Mazare A; Lee K; Müller J; Spiecker E; Schmuki P
    Chemistry; 2014 Jan; 20(1):77-82. PubMed ID: 24338769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.
    Ling Y; Wang G; Wang H; Yang Y; Li Y
    ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical assembly of TiO2-SrTiO3 heterostructures on conductive SnO2 backbone nanobelts for enhanced photoelectrochemical and photocatalytic performance.
    Park S; Kim S; Kim HJ; Lee CW; Song HJ; Seo SW; Park HK; Kim DW; Hong KS
    J Hazard Mater; 2014 Jun; 275():10-8. PubMed ID: 24830569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Facile Surface Passivation of Hematite Photoanodes with Iron Titanate Cocatalyst for Enhanced Water Splitting.
    Wang L; Nguyen NT; Schmuki P
    ChemSusChem; 2016 Aug; 9(16):2048-53. PubMed ID: 27348809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature.
    Cho ES; Kang MJ; Kang YS
    Phys Chem Chem Phys; 2015 Jun; 17(24):16145-50. PubMed ID: 26032403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution-processed, antimony-doped tin oxide colloid films enable high-performance TiO2 photoanodes for water splitting.
    Peng Q; Kalanyan B; Hoertz PG; Miller A; Kim DH; Hanson K; Alibabaei L; Liu J; Meyer TJ; Parsons GN; Glass JT
    Nano Lett; 2013 Apr; 13(4):1481-8. PubMed ID: 23537229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward High-Performance Hematite Nanotube Photoanodes: Charge-Transfer Engineering at Heterointerfaces.
    Kim do H; Andoshe DM; Shim YS; Moon CW; Sohn W; Choi S; Kim TL; Lee M; Park H; Hong K; Kwon KC; Suh JM; Kim JS; Lee JH; Jang HW
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23793-800. PubMed ID: 27551887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sb-Doped SnO
    Han H; Kment S; Karlicky F; Wang L; Naldoni A; Schmuki P; Zboril R
    Small; 2018 May; 14(19):e1703860. PubMed ID: 29655304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doping-Promoted Solar Water Oxidation on Hematite Photoanodes.
    Zhang Y; Ji H; Ma W; Chen C; Song W; Zhao J
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27376262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.
    Ji M; Cai J; Ma Y; Qi L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.