BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 24449523)

  • 21. Atomically Altered Hematite for Highly Efficient Perovskite Tandem Water-Splitting Devices.
    Gurudayal ; John RA; Boix PP; Yi C; Shi C; Scott MC; Veldhuis SA; Minor AM; Zakeeruddin SM; Wong LH; Grätzel M; Mathews N
    ChemSusChem; 2017 Jun; 10(11):2449-2456. PubMed ID: 28371520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent.
    Fan K; Li F; Wang L; Daniel Q; Chen H; Gabrielsson E; Sun J; Sun L
    ChemSusChem; 2015 Oct; 8(19):3242-7. PubMed ID: 26315677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystallinity Engineering of Hematite Nanorods for High-Efficiency Photoelectrochemical Water Splitting.
    Wang D; Zhang Y; Peng C; Wang J; Huang Q; Su S; Wang L; Huang W; Fan C
    Adv Sci (Weinh); 2015 Apr; 2(4):1500005. PubMed ID: 27660739
    [No Abstract]   [Full Text] [Related]  

  • 24. Joint Effects of Photoactive TiO2 and Fluoride-Doping on SnO2 Inverse Opal Nanoarchitecture for Solar Water Splitting.
    Gun Y; Song GY; Quy VH; Heo J; Lee H; Ahn KS; Kang SH
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20292-303. PubMed ID: 26322646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tubular morphology preservation and doping engineering of Sn/P-codoped hematite for photoelectrochemical water oxidation.
    Duan SF; Geng YY; Pan XB; Yao XQ; Zhao YX; Li X; Tao CL; Qin DD
    Dalton Trans; 2019 Jan; 48(3):928-935. PubMed ID: 30565614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TiO2 and Fe2O3 films for photoelectrochemical water splitting.
    Krysa J; Zlamal M; Kment S; Brunclikova M; Hubicka Z
    Molecules; 2015 Jan; 20(1):1046-58. PubMed ID: 25584834
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of Intragap States in Sensitized Sb-Doped Tin Oxide Photoanodes for Solar Fuels Production.
    Berardi S; Benazzi E; Marchini E; Cristino V; Argazzi R; Boaretto R; Gobbato T; Rigodanza F; Cerullo G; Bozzini B; Bonchio M; Prato M; Berger T; Caramori S
    ACS Appl Mater Interfaces; 2024 May; 16(21):27209-27223. PubMed ID: 38747220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films.
    Cordova IA; Peng Q; Ferrall IL; Rieth AJ; Hoertz PG; Glass JT
    Nanoscale; 2015 May; 7(18):8584-92. PubMed ID: 25899449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H2 Treatment.
    Moir J; Soheilnia N; Liao K; O'Brien P; Tian Y; Burch KS; Ozin GA
    ChemSusChem; 2015 May; 8(9):1557-67. PubMed ID: 25650837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.
    Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoelectrochemical Behavior of Electrophoretically Deposited Hematite Thin Films Modified with Ti(IV).
    Dalle Carbonare N; Boaretto R; Caramori S; Argazzi R; Dal Colle M; Pasquini L; Bertoncello R; Marelli M; Evangelisti C; Bignozzi CA
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27447604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulating Sn self-doping and boosting solar water splitting performance of hematite nanorod arrays grown on fluorine-doped tin oxide via low-level Hf doping.
    Ma H; Chen W; Fan Q; Ye C; Zheng M; Wang J
    J Colloid Interface Sci; 2022 Nov; 625():585-595. PubMed ID: 35751984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Solar Water Splitting by Swift Charge Separation in Au/FeOOH Sandwiched Single-Crystalline Fe
    Wang L; Nguyen NT; Zhang Y; Bi Y; Schmuki P
    ChemSusChem; 2017 Jul; 10(13):2720-2727. PubMed ID: 28437588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting.
    Hisatomi T; Brillet J; Cornuz M; Le Formal F; Tétreault N; Sivula K; Grätzel M
    Faraday Discuss; 2012; 155():223-32; discussion 297-308. PubMed ID: 22470976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing electrocatalytic performance of Sb-doped SnO ₂ electrode by compositing nitrogen-doped graphene nanosheets.
    Duan T; Wen Q; Chen Y; Zhou Y; Duan Y
    J Hazard Mater; 2014 Sep; 280():304-14. PubMed ID: 25179102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese.
    Gurudayal ; Chiam SY; Kumar MH; Bassi PS; Seng HL; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5852-9. PubMed ID: 24702963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shift of the reactive species in the Sb-SnO2-electrocatalyzed inactivation of e. coli and degradation of phenol: effects of nickel doping and electrolytes.
    Yang SY; Kim D; Park H
    Environ Sci Technol; 2014; 48(5):2877-84. PubMed ID: 24521404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.
    Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S
    Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.