These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
483 related articles for article (PubMed ID: 24449637)
1. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Rameez S; Mostafa SS; Miller C; Shukla AA Biotechnol Prog; 2014; 30(3):718-27. PubMed ID: 24449637 [TBL] [Abstract][Full Text] [Related]
2. Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures. Amanullah A; Otero JM; Mikola M; Hsu A; Zhang J; Aunins J; Schreyer HB; Hope JA; Russo AP Biotechnol Bioeng; 2010 May; 106(1):57-67. PubMed ID: 20073088 [TBL] [Abstract][Full Text] [Related]
3. A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Legmann R; Schreyer HB; Combs RG; McCormick EL; Russo AP; Rodgers ST Biotechnol Bioeng; 2009 Dec; 104(6):1107-20. PubMed ID: 19623562 [TBL] [Abstract][Full Text] [Related]
4. Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Hsu WT; Aulakh RP; Traul DL; Yuk IH Cytotechnology; 2012 Dec; 64(6):667-78. PubMed ID: 22451076 [TBL] [Abstract][Full Text] [Related]
5. Twenty-four well plate miniature bioreactor system as a scale-down model for cell culture process development. Chen A; Chitta R; Chang D; Amanullah A Biotechnol Bioeng; 2009 Jan; 102(1):148-60. PubMed ID: 18683260 [TBL] [Abstract][Full Text] [Related]
6. pH measurement and a rational and practical pH control strategy for high throughput cell culture system. Zhou H; Purdie J; Wang T; Ouyang A Biotechnol Prog; 2010; 26(3):872-80. PubMed ID: 20039376 [TBL] [Abstract][Full Text] [Related]
7. A strategy for clone selection under different production conditions. Legmann R; Benoit B; Fedechko RW; Deppeler CL; Srinivasan S; Robins RH; McCormick EL; Ferrick DA; Rodgers ST; Russo AP Biotechnol Prog; 2011; 27(3):757-65. PubMed ID: 21448991 [TBL] [Abstract][Full Text] [Related]
8. Impact of media and antifoam selection on monoclonal antibody production and quality using a high throughput micro-bioreactor system. Velugula-Yellela SR; Williams A; Trunfio N; Hsu CJ; Chavez B; Yoon S; Agarabi C Biotechnol Prog; 2018 Jan; 34(1):262-270. PubMed ID: 29086492 [TBL] [Abstract][Full Text] [Related]
9. Batch, fed-batch, and microcarrier cultures with CHO cell lines in a pressure-cycle driven miniaturized bioreactor. Kim BJ; Zhao T; Young L; Zhou P; Shuler ML Biotechnol Bioeng; 2012 Jan; 109(1):137-45. PubMed ID: 21965160 [TBL] [Abstract][Full Text] [Related]
10. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development. Janakiraman V; Kwiatkowski C; Kshirsagar R; Ryll T; Huang YM Biotechnol Prog; 2015; 31(6):1623-32. PubMed ID: 26317495 [TBL] [Abstract][Full Text] [Related]
11. Scale-down model qualification of ambrĀ® 250 high-throughput mini-bioreactor system for two commercial-scale mAb processes. Manahan M; Nelson M; Cacciatore JJ; Weng J; Xu S; Pollard J Biotechnol Prog; 2019 Nov; 35(6):e2870. PubMed ID: 31207168 [TBL] [Abstract][Full Text] [Related]
12. Bench-Scale Stirred-Tank Bioreactor for Recombinant Protein Production in Chinese Hamster Ovary (CHO) Cells in Suspension. Monteil DT; Kuan J Methods Mol Biol; 2018; 1850():133-145. PubMed ID: 30242685 [TBL] [Abstract][Full Text] [Related]
13. Defining process design space for monoclonal antibody cell culture. Abu-Absi SF; Yang L; Thompson P; Jiang C; Kandula S; Schilling B; Shukla AA Biotechnol Bioeng; 2010 Aug; 106(6):894-905. PubMed ID: 20589669 [TBL] [Abstract][Full Text] [Related]
14. Application of a cell-once-through perfusion strategy for production of recombinant antibody from rCHO cells in a Centritech Lab II centrifuge system. Kim BJ; Chang HN; Oh DJ Biotechnol Prog; 2007; 23(5):1186-97. PubMed ID: 17691812 [TBL] [Abstract][Full Text] [Related]
15. [Development and application of perfusion culture producing seed cells in WAVE bioreactor]. Yang J; Sui L Sheng Wu Gong Cheng Xue Bao; 2012 Mar; 28(3):358-67. PubMed ID: 22712394 [TBL] [Abstract][Full Text] [Related]
16. Bench-Scale Stirred-Tank Bioreactor for Recombinant Protein Production in Chinese Hamster Ovary (CHO) Cells in Suspension. Monteil D; Kuan J Methods Mol Biol; 2024; 2810():235-247. PubMed ID: 38926283 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopy integration to miniature bioreactors and large scale production bioreactors-Increasing current capabilities and model transfer. Rowland-Jones RC; Graf A; Woodhams A; Diaz-Fernandez P; Warr S; Soeldner R; Finka G; Hoehse M Biotechnol Prog; 2021 Jan; 37(1):e3074. PubMed ID: 32865874 [TBL] [Abstract][Full Text] [Related]
18. Development of a scale down cell culture model using multivariate analysis as a qualification tool. Tsang VL; Wang AX; Yusuf-Makagiansar H; Ryll T Biotechnol Prog; 2014; 30(1):152-60. PubMed ID: 24124180 [TBL] [Abstract][Full Text] [Related]
19. Establishment of a novel cell line, CHO-MK, derived from Chinese hamster ovary tissues for biologics manufacturing. Masuda K; Kubota M; Nakazawa Y; Iwama C; Watanabe K; Ishikawa N; Tanabe Y; Kono S; Tanemura H; Takahashi S; Makino T; Okumura T; Horiuchi T; Nonaka K; Murakami S; Kamihira M; Omasa T J Biosci Bioeng; 2024 Jun; 137(6):471-479. PubMed ID: 38472071 [TBL] [Abstract][Full Text] [Related]
20. Overcoming challenges in WAVE Bioreactors without feedback controls for pH and dissolved oxygen. Yuk IH; Baskar D; Duffy PH; Hsiung J; Leung S; Lin AA Biotechnol Prog; 2011; 27(5):1397-406. PubMed ID: 21987370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]