BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 24449753)

  • 41. Structural organization of the twin-arginine translocation system in Streptomyces lividans.
    De Keersmaeker S; Van Mellaert L; Schaerlaekens K; Van Dessel W; Vrancken K; Lammertyn E; Anné J; Geukens N
    FEBS Lett; 2005 Jan; 579(3):797-802. PubMed ID: 15670849
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mutations in subunits of the Escherichia coli twin-arginine translocase block function via differing effects on translocation activity or tat complex structure.
    Barrett CM; Mangels D; Robinson C
    J Mol Biol; 2005 Mar; 347(2):453-63. PubMed ID: 15740752
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diversity and evolution of bacterial twin arginine translocase protein, TatC, reveals a protein secretion system that is evolving to fit its environmental niche.
    Simone D; Bay DC; Leach T; Turner RJ
    PLoS One; 2013; 8(11):e78742. PubMed ID: 24236045
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular dissection of TatC defines critical regions essential for protein transport and a TatB-TatC contact site.
    Kneuper H; Maldonado B; Jäger F; Krehenbrink M; Buchanan G; Keller R; Müller M; Berks BC; Palmer T
    Mol Microbiol; 2012 Sep; 85(5):945-61. PubMed ID: 22742417
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial beta-lactamases.
    McDonough JA; Hacker KE; Flores AR; Pavelka MS; Braunstein M
    J Bacteriol; 2005 Nov; 187(22):7667-79. PubMed ID: 16267291
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalase (KatA) and KatA-associated protein (KapA) are essential to persistent colonization in the Helicobacter pylori SS1 mouse model.
    Harris AG; Wilson JE; Danon SJ; Dixon MF; Donegan K; Hazell SL
    Microbiology (Reading); 2003 Mar; 149(Pt 3):665-672. PubMed ID: 12634335
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The TatBC complex formation suppresses a modular TatB-multimerization in Escherichia coli.
    Behrendt J; Lindenstrauss U; Brüser T
    FEBS Lett; 2007 Aug; 581(21):4085-90. PubMed ID: 17678896
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of the twin-arginine translocase secretion system of Mycobacterium smegmatis.
    Posey JE; Shinnick TM; Quinn FD
    J Bacteriol; 2006 Feb; 188(4):1332-40. PubMed ID: 16452415
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Twin-arginine-dependent translocation of folded proteins.
    Fröbel J; Rose P; Müller M
    Philos Trans R Soc Lond B Biol Sci; 2012 Apr; 367(1592):1029-46. PubMed ID: 22411976
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mapping precursor-binding site on TatC subunit of twin arginine-specific protein translocase by site-specific photo cross-linking.
    Zoufaly S; Fröbel J; Rose P; Flecken T; Maurer C; Moser M; Müller M
    J Biol Chem; 2012 Apr; 287(16):13430-41. PubMed ID: 22362773
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Escherichia coli TatA and TatB proteins have N-out, C-in topology in intact cells.
    Koch S; Fritsch MJ; Buchanan G; Palmer T
    J Biol Chem; 2012 Apr; 287(18):14420-31. PubMed ID: 22399293
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Subunit composition and in vivo substrate-binding characteristics of Escherichia coli Tat protein complexes expressed at native levels.
    McDevitt CA; Buchanan G; Sargent F; Palmer T; Berks BC
    FEBS J; 2006 Dec; 273(24):5656-68. PubMed ID: 17212781
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic evidence for a TatC dimer at the core of the Escherichia coli twin arginine (Tat) protein translocase.
    Maldonado B; Buchanan G; Müller M; Berks BC; Palmer T
    J Mol Microbiol Biotechnol; 2011; 20(3):168-75. PubMed ID: 21709427
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Tat ménage à trois--The role of Bacillus subtilis TatAc in twin-arginine protein translocation.
    Goosens VJ; De-San-Eustaquio-Campillo A; Carballido-López R; van Dijl JM
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt A):2745-53. PubMed ID: 26239117
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrophobic mismatch is a key factor in protein transport across lipid bilayer membranes via the Tat pathway.
    Hao B; Zhou W; Theg SM
    J Biol Chem; 2022 Jul; 298(7):101991. PubMed ID: 35490783
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional characterization of Vibrio alginolyticus twin-arginine translocation system: its roles in biofilm formation, extracellular protease activity, and virulence towards fish.
    He H; Wang Q; Sheng L; Liu Q; Zhang Y
    Curr Microbiol; 2011 Apr; 62(4):1193-9. PubMed ID: 21170534
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system.
    Yen MR; Tseng YH; Nguyen EH; Wu LF; Saier MH
    Arch Microbiol; 2002 Jun; 177(6):441-50. PubMed ID: 12029389
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Membrane interactions and self-association of the TatA and TatB components of the twin-arginine translocation pathway.
    De Leeuw E; Porcelli I; Sargent F; Palmer T; Berks BC
    FEBS Lett; 2001 Oct; 506(2):143-8. PubMed ID: 11591389
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Escherichia coli twin-arginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex.
    Oates J; Barrett CM; Barnett JP; Byrne KG; Bolhuis A; Robinson C
    J Mol Biol; 2005 Feb; 346(1):295-305. PubMed ID: 15663945
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Tat-dependent protein translocation pathway.
    Hou B; Brüser T
    Biomol Concepts; 2011 Dec; 2(6):507-23. PubMed ID: 25962051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.