These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 24449842)
1. Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system. Bodea GO; Spille JH; Abe P; Andersson AS; Acker-Palmer A; Stumm R; Kubitscheck U; Blaess S Development; 2014 Feb; 141(3):661-73. PubMed ID: 24449842 [TBL] [Abstract][Full Text] [Related]
2. Correct setup of the substantia nigra requires Reelin-mediated fast, laterally-directed migration of dopaminergic neurons. Vaswani AR; Weykopf B; Hagemann C; Fried HU; Brüstle O; Blaess S Elife; 2019 Jan; 8():. PubMed ID: 30689541 [TBL] [Abstract][Full Text] [Related]
3. Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons. Yang S; Edman LC; Sánchez-Alcañiz JA; Fritz N; Bonilla S; Hecht J; Uhlén P; Pleasure SJ; Villaescusa JC; Marín O; Arenas E Development; 2013 Nov; 140(22):4554-64. PubMed ID: 24154522 [TBL] [Abstract][Full Text] [Related]
4. Lack of Reelin causes malpositioning of nigral dopaminergic neurons: evidence from comparison of normal and Reln(rl) mutant mice. Nishikawa S; Goto S; Yamada K; Hamasaki T; Ushio Y J Comp Neurol; 2003 Jun; 461(2):166-73. PubMed ID: 12724835 [TBL] [Abstract][Full Text] [Related]
5. ApoER2 and VLDLr are required for mediating reelin signalling pathway for normal migration and positioning of mesencephalic dopaminergic neurons. Sharaf A; Bock HH; Spittau B; Bouché E; Krieglstein K PLoS One; 2013; 8(8):e71091. PubMed ID: 23976984 [TBL] [Abstract][Full Text] [Related]
6. Reelin signaling is necessary for a specific step in the migration of hindbrain efferent neurons. Rossel M; Loulier K; Feuillet C; Alonso S; Carroll P Development; 2005 Mar; 132(6):1175-85. PubMed ID: 15703280 [TBL] [Abstract][Full Text] [Related]
7. Distinct developmental origins and regulatory mechanisms for GABAergic neurons associated with dopaminergic nuclei in the ventral mesodiencephalic region. Achim K; Peltopuro P; Lahti L; Li J; Salminen M; Partanen J Development; 2012 Jul; 139(13):2360-70. PubMed ID: 22627282 [TBL] [Abstract][Full Text] [Related]
8. Relative importance of the tyrosine phosphorylation sites of Disabled-1 to the transmission of Reelin signaling. Morimura T; Ogawa M Brain Res; 2009 Dec; 1304():26-37. PubMed ID: 19796633 [TBL] [Abstract][Full Text] [Related]
9. Role for Reelin-induced cofilin phosphorylation in the assembly of sympathetic preganglionic neurons in the murine intermediolateral column. Krüger MT; Zhao S; Chai X; Brunne B; Bouché E; Bock HH; Frotscher M Eur J Neurosci; 2010 Nov; 32(10):1611-7. PubMed ID: 21039973 [TBL] [Abstract][Full Text] [Related]
10. Reelin, neuronal polarity and process orientation of cortical neurons. Förster E Neuroscience; 2014 Jun; 269():102-11. PubMed ID: 24657457 [TBL] [Abstract][Full Text] [Related]
11. Migration of sympathetic preganglionic neurons in the spinal cord is regulated by Reelin-dependent Dab1 tyrosine phosphorylation and CrkL. Yip YP; Kronstadt-O'Brien P; Capriotti C; Cooper JA; Yip JW J Comp Neurol; 2007 Jun; 502(4):635-43. PubMed ID: 17394141 [TBL] [Abstract][Full Text] [Related]
12. Neurons tend to stop migration and differentiate along the cortical internal plexiform zones in the Reelin signal-deficient mice. Tabata H; Nakajima K J Neurosci Res; 2002 Sep; 69(6):723-30. PubMed ID: 12205665 [TBL] [Abstract][Full Text] [Related]
13. Altered speeds and trajectories of neurons migrating in the ventricular and subventricular zones of the reeler neocortex. Britto JM; Tait KJ; Johnston LA; Hammond VE; Kalloniatis M; Tan SS Cereb Cortex; 2011 May; 21(5):1018-27. PubMed ID: 20847150 [TBL] [Abstract][Full Text] [Related]
14. SDF1/CXCR4 signalling regulates two distinct processes of precerebellar neuronal migration and its depletion leads to abnormal pontine nuclei formation. Zhu Y; Matsumoto T; Mikami S; Nagasawa T; Murakami F Development; 2009 Jun; 136(11):1919-28. PubMed ID: 19429788 [TBL] [Abstract][Full Text] [Related]
15. Altered N-methyl-D-aspartate receptor function in reelin heterozygous mice: male-female differences and comparison with dopaminergic activity. van den Buuse M; Halley P; Hill R; Labots M; Martin S Prog Neuropsychopharmacol Biol Psychiatry; 2012 Jun; 37(2):237-46. PubMed ID: 22361156 [TBL] [Abstract][Full Text] [Related]
16. GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. Reyes S; Fu Y; Double K; Thompson L; Kirik D; Paxinos G; Halliday GM J Comp Neurol; 2012 Aug; 520(12):2591-607. PubMed ID: 22252428 [TBL] [Abstract][Full Text] [Related]
17. Localization of reelin signaling pathway components in murine midbrain and striatum. Sharaf A; Rahhal B; Spittau B; Roussa E Cell Tissue Res; 2015 Feb; 359(2):393-407. PubMed ID: 25418135 [TBL] [Abstract][Full Text] [Related]
18. Identification of a transient subpial neurogenic zone in the developing dentate gyrus and its regulation by Cxcl12 and reelin signaling. Li G; Kataoka H; Coughlin SR; Pleasure SJ Development; 2009 Jan; 136(2):327-35. PubMed ID: 19103804 [TBL] [Abstract][Full Text] [Related]
19. Signalling through phospholipase C beta 4 is not essential for midbrain dopaminergic neuron survival. Smits SM; van der Nobelen S; Hornman KJ; von Oerthel L; Burbach JP; Smidt MP Neuroscience; 2005; 136(1):171-9. PubMed ID: 16198487 [TBL] [Abstract][Full Text] [Related]
20. A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. Fu Y; Yuan Y; Halliday G; Rusznák Z; Watson C; Paxinos G Brain Struct Funct; 2012 Apr; 217(2):591-612. PubMed ID: 21935672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]