These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
527 related articles for article (PubMed ID: 24450772)
1. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. Hu S; Zhou X; Gu X; Cao S; Wang C; Xu JR Mol Plant Microbe Interact; 2014 Jun; 27(6):557-66. PubMed ID: 24450772 [TBL] [Abstract][Full Text] [Related]
2. The cAMP signaling pathway in Fusarium verticillioides is important for conidiation, plant infection, and stress responses but not fumonisin production. Choi YE; Xu JR Mol Plant Microbe Interact; 2010 Apr; 23(4):522-33. PubMed ID: 20192838 [TBL] [Abstract][Full Text] [Related]
3. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae. Li Y; Zhang X; Hu S; Liu H; Xu JR PLoS Genet; 2017 Aug; 13(8):e1006954. PubMed ID: 28806765 [TBL] [Abstract][Full Text] [Related]
4. The PKR regulatory subunit of protein kinase A (PKA) is involved in the regulation of growth, sexual and asexual development, and pathogenesis in Fusarium graminearum. Li C; Zhang Y; Wang H; Chen L; Zhang J; Sun M; Xu JR; Wang C Mol Plant Pathol; 2018 Apr; 19(4):909-921. PubMed ID: 28665481 [TBL] [Abstract][Full Text] [Related]
5. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. Yin T; Zhang Q; Wang J; Liu H; Wang C; Xu JR; Jiang C Mol Plant Pathol; 2018 Mar; 19(3):552-563. PubMed ID: 28142217 [TBL] [Abstract][Full Text] [Related]
6. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. Lee Y; Min K; Son H; Park AR; Kim JC; Choi GJ; Lee YW Mol Plant Microbe Interact; 2014 Dec; 27(12):1344-55. PubMed ID: 25083910 [TBL] [Abstract][Full Text] [Related]
7. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Li Y; Wang C; Liu W; Wang G; Kang Z; Kistler HC; Xu JR Mol Plant Microbe Interact; 2011 Apr; 24(4):487-96. PubMed ID: 21138346 [TBL] [Abstract][Full Text] [Related]
8. A novel transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum. Wang Y; Liu W; Hou Z; Wang C; Zhou X; Jonkers W; Ding S; Kistler HC; Xu JR Mol Plant Microbe Interact; 2011 Jan; 24(1):118-28. PubMed ID: 20795857 [TBL] [Abstract][Full Text] [Related]
9. EBR1, a novel Zn(2)Cys(6) transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum. Zhao C; Waalwijk C; de Wit PJ; van der Lee T; Tang D Mol Plant Microbe Interact; 2011 Dec; 24(12):1407-18. PubMed ID: 21830952 [TBL] [Abstract][Full Text] [Related]
10. The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum. Zhou X; Heyer C; Choi YE; Mehrabi R; Xu JR Fungal Genet Biol; 2010 Feb; 47(2):143-51. PubMed ID: 19909822 [TBL] [Abstract][Full Text] [Related]
11. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N; Schäfer W; Bormann J Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226 [TBL] [Abstract][Full Text] [Related]
12. Involvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearum. Zheng Z; Gao T; Hou Y; Zhou M FEMS Microbiol Lett; 2013 Dec; 349(2):88-98. PubMed ID: 24117691 [TBL] [Abstract][Full Text] [Related]
13. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum. Van Nguyen T; Kröger C; Bönnighausen J; Schäfer W; Bormann J Mol Plant Microbe Interact; 2013 Dec; 26(12):1378-94. PubMed ID: 23945004 [TBL] [Abstract][Full Text] [Related]
15. FgSfl1 and Its Conserved PKA Phosphorylation Sites Are Important for Conidiation, Sexual Reproduction, and Pathogenesis in Gong C; Huang J; Sun D; Xu D; Guo Y; Kang J; Niu G; Wang C J Fungi (Basel); 2021 Sep; 7(9):. PubMed ID: 34575793 [TBL] [Abstract][Full Text] [Related]
16. FgEaf6 regulates virulence, asexual/sexual development and conidial septation in Fusarium graminearum. Qin J; Wu M; Zhou S Curr Genet; 2020 Jun; 66(3):517-529. PubMed ID: 31728616 [TBL] [Abstract][Full Text] [Related]
17. The Sch9 kinase regulates conidium size, stress responses, and pathogenesis in Fusarium graminearum. Chen D; Wang Y; Zhou X; Wang Y; Xu JR PLoS One; 2014; 9(8):e105811. PubMed ID: 25144230 [TBL] [Abstract][Full Text] [Related]
18. Functional characterization of Rho family small GTPases in Fusarium graminearum. Zhang C; Wang Y; Wang J; Zhai Z; Zhang L; Zheng W; Zheng W; Yu W; Zhou J; Lu G; Shim WB; Wang Z Fungal Genet Biol; 2013 Dec; 61():90-9. PubMed ID: 24055721 [TBL] [Abstract][Full Text] [Related]
19. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Jiang C; Zhang C; Wu C; Sun P; Hou R; Liu H; Wang C; Xu JR Environ Microbiol; 2016 Nov; 18(11):3689-3701. PubMed ID: 26940955 [TBL] [Abstract][Full Text] [Related]
20. The phospholipase C (FgPLC1) is involved in regulation of development, pathogenicity, and stress responses in Fusarium graminearum. Zhu Q; Sun L; Lian J; Gao X; Zhao L; Ding M; Li J; Liang Y Fungal Genet Biol; 2016 Dec; 97():1-9. PubMed ID: 27777035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]