BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24451126)

  • 1. Molecular dynamics simulation of the crystallizable fragment of IgG1-insights for the design of Fcabs.
    Lai B; Hasenhindl C; Obinger C; Oostenbrink C
    Int J Mol Sci; 2014 Jan; 15(1):438-55. PubMed ID: 24451126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IgG2 Fc structure and the dynamic features of the IgG CH2-CH3 interface.
    Teplyakov A; Zhao Y; Malia TJ; Obmolova G; Gilliland GL
    Mol Immunol; 2013 Nov; 56(1-2):131-9. PubMed ID: 23628091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creating stable stem regions for loop elongation in Fcabs - insights from combining yeast surface display, in silico loop reconstruction and molecular dynamics simulations.
    Hasenhindl C; Lai B; Delgado J; Traxlmayr MW; Stadlmayr G; Rüker F; Serrano L; Oostenbrink C; Obinger C
    Biochim Biophys Acta; 2014 Sep; 1844(9):1530-40. PubMed ID: 24792385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilisation of the Fc fragment of human IgG1 by engineered intradomain disulfide bonds.
    Wozniak-Knopp G; Stadlmann J; Rüker F
    PLoS One; 2012; 7(1):e30083. PubMed ID: 22272277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a stability landscape of the CH3 domain of human IgG1 by combining directed evolution with high throughput sequencing.
    Traxlmayr MW; Hasenhindl C; Hackl M; Stadlmayr G; Rybka JD; Borth N; Grillari J; Rüker F; Obinger C
    J Mol Biol; 2012 Oct; 423(3):397-412. PubMed ID: 22846908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the fragment crystallizable (Fc) region of human IgG1 multimers and monomers to fine-tune interactions with sialic acid-dependent receptors.
    Blundell PA; Le NPL; Allen J; Watanabe Y; Pleass RJ
    J Biol Chem; 2017 Aug; 292(31):12994-13007. PubMed ID: 28620050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered IgG1-Fc--one fragment to bind them all.
    Lobner E; Traxlmayr MW; Obinger C; Hasenhindl C
    Immunol Rev; 2016 Mar; 270(1):113-31. PubMed ID: 26864108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Consequences of glycan truncation on Fc structural integrity.
    Buck PM; Kumar S; Singh SK
    MAbs; 2013; 5(6):904-16. PubMed ID: 24492344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoglobulin G1 Fc domain motions: implications for Fc engineering.
    Frank M; Walker RC; Lanzilotta WN; Prestegard JH; Barb AW
    J Mol Biol; 2014 Apr; 426(8):1799-811. PubMed ID: 24522230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlations between changes in conformational dynamics and physical stability in a mutant IgG1 mAb engineered for extended serum half-life.
    Majumdar R; Esfandiary R; Bishop SM; Samra HS; Middaugh CR; Volkin DB; Weis DD
    MAbs; 2015; 7(1):84-95. PubMed ID: 25524268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability assessment on a library scale: a rapid method for the evaluation of the commutability and insertion of residues in C-terminal loops of the CH3 domains of IgG1-Fc.
    Hasenhindl C; Traxlmayr MW; Wozniak-Knopp G; Jones PC; Stadlmayr G; Rüker F; Obinger C
    Protein Eng Des Sel; 2013 Oct; 26(10):675-82. PubMed ID: 24006374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fcab-HER2 Interaction: a Ménage à Trois. Lessons from X-Ray and Solution Studies.
    Lobner E; Humm AS; Göritzer K; Mlynek G; Puchinger MG; Hasenhindl C; Rüker F; Traxlmayr MW; Djinović-Carugo K; Obinger C
    Structure; 2017 Jun; 25(6):878-889.e5. PubMed ID: 28528777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural differences between glycosylated, disulfide-linked heterodimeric Knob-into-Hole Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products.
    Kuglstatter A; Stihle M; Neumann C; Müller C; Schaefer W; Klein C; Benz J;
    Protein Eng Des Sel; 2017 Sep; 30(9):649-656. PubMed ID: 28985438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution of Her2/neu-binding IgG1-Fc for improved stability and resistance to aggregation by using yeast surface display.
    Traxlmayr MW; Lobner E; Antes B; Kainer M; Wiederkum S; Hasenhindl C; Stadlmayr G; Rüker F; Woisetschläger M; Moulder K; Obinger C
    Protein Eng Des Sel; 2013 Apr; 26(4):255-65. PubMed ID: 23267121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing Fcabs: well-expressed and stable high affinity antigen-binding Fc fragments.
    Wozniak-Knopp G; Stadlmayr G; Perthold JW; Stadlbauer K; Woisetschläger M; Sun H; Rüker F
    Protein Eng Des Sel; 2017 Sep; 30(9):657-671. PubMed ID: 28981753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational effects of N-glycan core fucosylation of immunoglobulin G Fc region on its interaction with Fcγ receptor IIIa.
    Sakae Y; Satoh T; Yagi H; Yanaka S; Yamaguchi T; Isoda Y; Iida S; Okamoto Y; Kato K
    Sci Rep; 2017 Oct; 7(1):13780. PubMed ID: 29062024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that the hinge region plays a role in maintaining serum levels of the murine IgG1 molecule.
    Kim JK; Tsen MF; Ghetie V; Ward ES
    Mol Immunol; 1995 May; 32(7):467-75. PubMed ID: 7783750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refined structure of an intact IgG2a monoclonal antibody.
    Harris LJ; Larson SB; Hasel KW; McPherson A
    Biochemistry; 1997 Feb; 36(7):1581-97. PubMed ID: 9048542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibody Fucosylation Lowers the FcγRIIIa/CD16a Affinity by Limiting the Conformations Sampled by the N162-Glycan.
    Falconer DJ; Subedi GP; Marcella AM; Barb AW
    ACS Chem Biol; 2018 Aug; 13(8):2179-2189. PubMed ID: 30016589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the cooperative structure of Fc fragments from myeloma immunoglobulin G.
    Tischenko VM; Abramov VM; Zav'yalov VP
    Biochemistry; 1998 Apr; 37(16):5576-81. PubMed ID: 9548942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.