These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 24451126)
41. Crystal Structure of a Homogeneous IgG-Fc Glycoform with the N-Glycan Designed to Maximize the Antibody Dependent Cellular Cytotoxicity. Chen CL; Hsu JC; Lin CW; Wang CH; Tsai MH; Wu CY; Wong CH; Ma C ACS Chem Biol; 2017 May; 12(5):1335-1345. PubMed ID: 28318221 [TBL] [Abstract][Full Text] [Related]
42. Elucidation of acid-induced unfolding and aggregation of human immunoglobulin IgG1 and IgG2 Fc. Latypov RF; Hogan S; Lau H; Gadgil H; Liu D J Biol Chem; 2012 Jan; 287(2):1381-96. PubMed ID: 22084250 [TBL] [Abstract][Full Text] [Related]
43. Localization of the site of the murine IgG1 molecule that is involved in binding to the murine intestinal Fc receptor. Kim JK; Tsen MF; Ghetie V; Ward ES Eur J Immunol; 1994 Oct; 24(10):2429-34. PubMed ID: 7925571 [TBL] [Abstract][Full Text] [Related]
44. Effect of Fc-Glycan Structure on the Conformational Stability of IgG Revealed by Hydrogen/Deuterium Exchange and Limited Proteolysis. Fang J; Richardson J; Du Z; Zhang Z Biochemistry; 2016 Feb; 55(6):860-8. PubMed ID: 26812426 [TBL] [Abstract][Full Text] [Related]
45. Global conformational changes in IgG-Fc upon mutation of the FcRn-binding site are not associated with altered antibody-dependent effector functions. Burvenich IJG; Farrugia W; Liu Z; Makris D; King D; Gloria B; Perani A; Allan LC; Scott AM; Ramsland PA Biochem J; 2018 Jul; 475(13):2179-2190. PubMed ID: 29794155 [TBL] [Abstract][Full Text] [Related]
46. Antigen-Induced Allosteric Changes in a Human IgG1 Fc Increase Low-Affinity Fcγ Receptor Binding. Orlandi C; Deredge D; Ray K; Gohain N; Tolbert W; DeVico AL; Wintrode P; Pazgier M; Lewis GK Structure; 2020 May; 28(5):516-527.e5. PubMed ID: 32209433 [TBL] [Abstract][Full Text] [Related]
47. Structure of the Fc fragment of the NIST reference antibody RM8671. Gallagher DT; Galvin CV; Karageorgos I Acta Crystallogr F Struct Biol Commun; 2018 Sep; 74(Pt 9):524-529. PubMed ID: 30198883 [TBL] [Abstract][Full Text] [Related]
48. Abolition of aggregation of CH Oyama K; Ohkuri T; Ochi J; Caaveiro JMM; Ueda T Biochem Biophys Res Commun; 2021 Jun; 558():114-119. PubMed ID: 33915325 [TBL] [Abstract][Full Text] [Related]
49. Hinge-Deficient IgG1 Fc Fusion: Application to Human Lactoferrin. Shiga Y; Murata D; Sugimoto A; Oshima Y; Tada M; Ishii-Watabe A; Imai K; Tomii K; Takeuchi T; Kagaya S; Sato A Mol Pharm; 2017 Sep; 14(9):3025-3035. PubMed ID: 28763236 [TBL] [Abstract][Full Text] [Related]
50. Engineering of Immunoglobulin Fc Heterodimers Using Yeast Surface-Displayed Combinatorial Fc Library Screening. Choi HJ; Kim YJ; Choi DK; Kim YS PLoS One; 2015; 10(12):e0145349. PubMed ID: 26675656 [TBL] [Abstract][Full Text] [Related]
51. Engineered soluble monomeric IgG1 CH3 domain: generation, mechanisms of function, and implications for design of biological therapeutics. Ying T; Chen W; Feng Y; Wang Y; Gong R; Dimitrov DS J Biol Chem; 2013 Aug; 288(35):25154-25164. PubMed ID: 23867459 [TBL] [Abstract][Full Text] [Related]
52. Hydrogen exchange mass spectrometry reveals protein interfaces and distant dynamic coupling effects during the reversible self-association of an IgG1 monoclonal antibody. Arora J; Hickey JM; Majumdar R; Esfandiary R; Bishop SM; Samra HS; Middaugh CR; Weis DD; Volkin DB MAbs; 2015; 7(3):525-39. PubMed ID: 25875351 [TBL] [Abstract][Full Text] [Related]
53. The Structural Role of Antibody N-Glycosylation in Receptor Interactions. Subedi GP; Barb AW Structure; 2015 Sep; 23(9):1573-1583. PubMed ID: 26211613 [TBL] [Abstract][Full Text] [Related]
54. Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. Matsumiya S; Yamaguchi Y; Saito J; Nagano M; Sasakawa H; Otaki S; Satoh M; Shitara K; Kato K J Mol Biol; 2007 May; 368(3):767-79. PubMed ID: 17368483 [TBL] [Abstract][Full Text] [Related]
55. An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations. Vafa O; Gilliland GL; Brezski RJ; Strake B; Wilkinson T; Lacy ER; Scallon B; Teplyakov A; Malia TJ; Strohl WR Methods; 2014 Jan; 65(1):114-26. PubMed ID: 23872058 [TBL] [Abstract][Full Text] [Related]
57. Identification of preferred multimodal ligand-binding regions on IgG1 F Gudhka RB; Bilodeau CL; McCallum SA; McCoy MA; Roush DJ; Snyder MA; Cramer SM Biotechnol Bioeng; 2021 Feb; 118(2):809-822. PubMed ID: 33107976 [TBL] [Abstract][Full Text] [Related]
58. Immunoglobulin domain interface exchange as a platform technology for the generation of Fc heterodimers and bispecific antibodies. Skegro D; Stutz C; Ollier R; Svensson E; Wassmann P; Bourquin F; Monney T; Gn S; Blein S J Biol Chem; 2017 Jun; 292(23):9745-9759. PubMed ID: 28450393 [TBL] [Abstract][Full Text] [Related]
59. Relative stabilities of IgG1 and IgG4 Fab domains: influence of the light-heavy interchain disulfide bond architecture. Heads JT; Adams R; D'Hooghe LE; Page MJ; Humphreys DP; Popplewell AG; Lawson AD; Henry AJ Protein Sci; 2012 Sep; 21(9):1315-22. PubMed ID: 22761163 [TBL] [Abstract][Full Text] [Related]
60. Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Houde D; Arndt J; Domeier W; Berkowitz S; Engen JR Anal Chem; 2009 Apr; 81(7):2644-51. PubMed ID: 19265386 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]