BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 24451197)

  • 1. GraphProt: modeling binding preferences of RNA-binding proteins.
    Maticzka D; Lange SJ; Costa F; Backofen R
    Genome Biol; 2014 Jan; 15(1):R17. PubMed ID: 24451197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
    Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y
    Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-centric approaches to study RNA-protein interactions in vitro and in silico.
    Dasti A; Cid-Samper F; Bechara E; Tartaglia GG
    Methods; 2020 Jun; 178():11-18. PubMed ID: 31563541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RBPmotif: a web server for the discovery of sequence and structure preferences of RNA-binding proteins.
    Kazan H; Morris Q
    Nucleic Acids Res; 2013 Jul; 41(Web Server issue):W180-6. PubMed ID: 23754853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning framework for modeling structural features of RNA-binding protein targets.
    Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J
    Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data.
    Heller D; Krestel R; Ohler U; Vingron M; Marsico A
    Nucleic Acids Res; 2017 Nov; 45(19):11004-11018. PubMed ID: 28977546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finding the target sites of RNA-binding proteins.
    Li X; Kazan H; Lipshitz HD; Morris QD
    Wiley Interdiscip Rev RNA; 2014; 5(1):111-30. PubMed ID: 24217996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.
    Lambert NJ; Robertson AD; Burge CB
    Methods Enzymol; 2015; 558():465-493. PubMed ID: 26068750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SMARTIV: combined sequence and structure de-novo motif discovery for in-vivo RNA binding data.
    Polishchuk M; Paz I; Yakhini Z; Mandel-Gutfreund Y
    Nucleic Acids Res; 2018 Jul; 46(W1):W221-W228. PubMed ID: 29800452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RCK: accurate and efficient inference of sequence- and structure-based protein-RNA binding models from RNAcompete data.
    Orenstein Y; Wang Y; Berger B
    Bioinformatics; 2016 Jun; 32(12):i351-i359. PubMed ID: 27307637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RBPsuite: RNA-protein binding sites prediction suite based on deep learning.
    Pan X; Fang Y; Li X; Yang Y; Shen HB
    BMC Genomics; 2020 Dec; 21(1):884. PubMed ID: 33297946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. INFO-RNA--a server for fast inverse RNA folding satisfying sequence constraints.
    Busch A; Backofen R
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W310-3. PubMed ID: 17452349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins.
    Kazan H; Ray D; Chan ET; Hughes TR; Morris Q
    PLoS Comput Biol; 2010 Jul; 6(7):e1000832. PubMed ID: 20617199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SSMART: sequence-structure motif identification for RNA-binding proteins.
    Munteanu A; Mukherjee N; Ohler U
    Bioinformatics; 2018 Dec; 34(23):3990-3998. PubMed ID: 29893814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RBP-TSTL is a two-stage transfer learning framework for genome-scale prediction of RNA-binding proteins.
    Peng X; Wang X; Guo Y; Ge Z; Li F; Gao X; Song J
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35649392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial correlation statistics enable transcriptome-wide characterization of RNA structure binding.
    Busa VF; Favorov AV; Fertig EJ; Leung AKL
    Cell Rep Methods; 2021 Oct; 1(6):100088. PubMed ID: 35474897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mCarts: Genome-Wide Prediction of Clustered Sequence Motifs as Binding Sites for RNA-Binding Proteins.
    Weyn-Vanhentenryck SM; Zhang C
    Methods Mol Biol; 2016; 1421():215-26. PubMed ID: 26965268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of CLIP-seq data.
    Uhl M; Houwaart T; Corrado G; Wright PR; Backofen R
    Methods; 2017 Apr; 118-119():60-72. PubMed ID: 28254606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.