These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Association pattern mining of intron retention events in human based on hybrid learning machine. Hu HJ; Goh SH; Lee YS Genes Genet Syst; 2010; 85(6):383-94. PubMed ID: 21415568 [TBL] [Abstract][Full Text] [Related]
44. Quantitative prediction of variant effects on alternative splicing in Kumar J; Lackey L; Waldern JM; Dey A; Mustoe AM; Weeks KM; Mathews DH; Laederach A Elife; 2022 Jun; 11():. PubMed ID: 35695373 [TBL] [Abstract][Full Text] [Related]
45. Can a 'patch' in a skipped exon make the pre-mRNA splicing machine run better? Buratti E; Baralle FE; Pagani F Trends Mol Med; 2003 Jun; 9(6):229-32; discussion 233-4. PubMed ID: 12829008 [TBL] [Abstract][Full Text] [Related]
46. Searching for splicing motifs. Chasin LA Adv Exp Med Biol; 2007; 623():85-106. PubMed ID: 18380342 [TBL] [Abstract][Full Text] [Related]
47. Structural determinants for alternative splicing regulation of the MAPT pre-mRNA. Lisowiec J; Magner D; Kierzek E; Lenartowicz E; Kierzek R RNA Biol; 2015; 12(3):330-42. PubMed ID: 25826665 [TBL] [Abstract][Full Text] [Related]
48. Performance evaluation of computational methods for splice-disrupting variants and improving the performance using the machine learning-based framework. Liu H; Dai J; Li K; Sun Y; Wei H; Wang H; Zhao C; Wang DW Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35976049 [TBL] [Abstract][Full Text] [Related]
49. In silico and in vivo splicing analysis of MLH1 and MSH2 missense mutations shows exon- and tissue-specific effects. Lastella P; Surdo NC; Resta N; Guanti G; Stella A BMC Genomics; 2006 Sep; 7():243. PubMed ID: 16995940 [TBL] [Abstract][Full Text] [Related]
50. Exon 10 skipping in ACAT1 caused by a novel c.949G>A mutation located at an exonic splice enhancer site. Otsuka H; Sasai H; Nakama M; Aoyama Y; Abdelkreem E; Ohnishi H; Konstantopoulou V; Sass JO; Fukao T Mol Med Rep; 2016 Nov; 14(5):4906-4910. PubMed ID: 27748876 [TBL] [Abstract][Full Text] [Related]
51. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs. Wu X; Hurst LD Mol Biol Evol; 2015 Jul; 32(7):1847-61. PubMed ID: 25771198 [TBL] [Abstract][Full Text] [Related]
53. Systematic Computational Identification of Variants That Activate Exonic and Intronic Cryptic Splice Sites. Lee M; Roos P; Sharma N; Atalar M; Evans TA; Pellicore MJ; Davis E; Lam AN; Stanley SE; Khalil SE; Solomon GM; Walker D; Raraigh KS; Vecchio-Pagan B; Armanios M; Cutting GR Am J Hum Genet; 2017 May; 100(5):751-765. PubMed ID: 28475858 [TBL] [Abstract][Full Text] [Related]
54. tau Exon 10 expression involves a bipartite intron 10 regulatory sequence and weak 5' and 3' splice sites. D'Souza I; Schellenberg GD J Biol Chem; 2002 Jul; 277(29):26587-99. PubMed ID: 12000767 [TBL] [Abstract][Full Text] [Related]
55. Mathematical modeling identifies potential gene structure determinants of co-transcriptional control of alternative pre-mRNA splicing. Davis-Turak J; Johnson TL; Hoffmann A Nucleic Acids Res; 2018 Nov; 46(20):10598-10607. PubMed ID: 30272246 [TBL] [Abstract][Full Text] [Related]
56. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Xiong HY; Alipanahi B; Lee LJ; Bretschneider H; Merico D; Yuen RK; Hua Y; Gueroussov S; Najafabadi HS; Hughes TR; Morris Q; Barash Y; Krainer AR; Jojic N; Scherer SW; Blencowe BJ; Frey BJ Science; 2015 Jan; 347(6218):1254806. PubMed ID: 25525159 [TBL] [Abstract][Full Text] [Related]
57. Activation of cryptic splice sites is a frequent splicing defect mechanism caused by mutations in exon and intron sequences of the OPA1 gene. Schimpf S; Schaich S; Wissinger B Hum Genet; 2006 Feb; 118(6):767-71. PubMed ID: 16323009 [TBL] [Abstract][Full Text] [Related]
58. Muscle-specific exonic splicing silencer for exon exclusion in human ATP synthase gamma-subunit pre-mRNA. Hayakawa M; Sakashita E; Ueno E; Tominaga S; Hamamoto T; Kagawa Y; Endo H J Biol Chem; 2002 Mar; 277(9):6974-84. PubMed ID: 11744705 [TBL] [Abstract][Full Text] [Related]
59. Predicting Splicing from Primary Sequence with Deep Learning. Jaganathan K; Kyriazopoulou Panagiotopoulou S; McRae JF; Darbandi SF; Knowles D; Li YI; Kosmicki JA; Arbelaez J; Cui W; Schwartz GB; Chow ED; Kanterakis E; Gao H; Kia A; Batzoglou S; Sanders SJ; Farh KK Cell; 2019 Jan; 176(3):535-548.e24. PubMed ID: 30661751 [TBL] [Abstract][Full Text] [Related]
60. Functional assessment of potential splice site variants in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Groeneweg JA; Ummels A; Mulder M; Bikker H; van der Smagt JJ; van Mil AM; Homfray T; Post JG; Elvan A; van der Heijden JF; Houweling AC; Jongbloed JD; Wilde AA; van Tintelen JP; Hauer RN; Dooijes D Heart Rhythm; 2014 Nov; 11(11):2010-7. PubMed ID: 25087486 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]