These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 24451383)
1. Molecular motions involved in Na-K-Cl cotransporter-mediated ion transport and transporter activation revealed by internal cross-linking between transmembrane domains 10 and 11/12. Monette MY; Somasekharan S; Forbush B J Biol Chem; 2014 Mar; 289(11):7569-79. PubMed ID: 24451383 [TBL] [Abstract][Full Text] [Related]
2. Loop diuretic and ion-binding residues revealed by scanning mutagenesis of transmembrane helix 3 (TM3) of Na-K-Cl cotransporter (NKCC1). Somasekharan S; Tanis J; Forbush B J Biol Chem; 2012 May; 287(21):17308-17317. PubMed ID: 22437837 [TBL] [Abstract][Full Text] [Related]
3. A regulatory locus of phosphorylation in the N terminus of the Na-K-Cl cotransporter, NKCC1. Darman RB; Forbush B J Biol Chem; 2002 Oct; 277(40):37542-50. PubMed ID: 12145304 [TBL] [Abstract][Full Text] [Related]
4. Molecular mechanisms of Cl- transport by the renal Na(+)-K(+)-Cl- cotransporter. Identification of an intracellular locus that may form part of a high affinity Cl(-)-binding site. Gagnon E; Bergeron MJ; Brunet GM; Daigle ND; Simard CF; Isenring P J Biol Chem; 2004 Feb; 279(7):5648-54. PubMed ID: 14645215 [TBL] [Abstract][Full Text] [Related]
6. Identification of a functionally important conformation-sensitive region of the secretory Na+-K+-2Cl- cotransporter (NKCC1). Dehaye JP; Nagy A; Premkumar A; Turner RJ J Biol Chem; 2003 Apr; 278(14):11811-7. PubMed ID: 12556450 [TBL] [Abstract][Full Text] [Related]
7. Activation of the Na-K-Cl cotransporter NKCC1 detected with a phospho-specific antibody. Flemmer AW; Gimenez I; Dowd BF; Darman RB; Forbush B J Biol Chem; 2002 Oct; 277(40):37551-8. PubMed ID: 12145305 [TBL] [Abstract][Full Text] [Related]
8. Regulatory activation is accompanied by movement in the C terminus of the Na-K-Cl cotransporter (NKCC1). Monette MY; Forbush B J Biol Chem; 2012 Jan; 287(3):2210-20. PubMed ID: 22121194 [TBL] [Abstract][Full Text] [Related]
9. The influenza virus M2 ion channel protein: probing the structure of the transmembrane domain in intact cells by using engineered disulfide cross-linking. Bauer CM; Pinto LH; Cross TA; Lamb RA Virology; 1999 Feb; 254(1):196-209. PubMed ID: 9927586 [TBL] [Abstract][Full Text] [Related]
10. Ion and bumetanide binding by the Na-K-Cl cotransporter. Importance of transmembrane domains. Isenring P; Forbush B J Biol Chem; 1997 Sep; 272(39):24556-62. PubMed ID: 9305921 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanisms of cation transport by the renal Na+-K+-Cl- cotransporter: structural insight into the operating characteristics of the ion transport sites. Gagnon E; Bergeron MJ; Daigle ND; Lefoll MH; Isenring P J Biol Chem; 2005 Sep; 280(37):32555-63. PubMed ID: 16027154 [TBL] [Abstract][Full Text] [Related]
12. Cloning and functional characterization of a cation-Cl- cotransporter-interacting protein. Caron L; Rousseau F; Gagnon E; Isenring P J Biol Chem; 2000 Oct; 275(41):32027-36. PubMed ID: 10871601 [TBL] [Abstract][Full Text] [Related]
13. Structure of the human cation-chloride cotransporter NKCC1 determined by single-particle electron cryo-microscopy. Yang X; Wang Q; Cao E Nat Commun; 2020 Feb; 11(1):1016. PubMed ID: 32081947 [TBL] [Abstract][Full Text] [Related]
14. Use of an in situ disulfide cross-linking strategy to map proximities between amino acid residues in transmembrane domains I and VII of the M3 muscarinic acetylcholine receptor. Hamdan FF; Ward SD; Siddiqui NA; Bloodworth LM; Wess J Biochemistry; 2002 Jun; 41(24):7647-58. PubMed ID: 12056896 [TBL] [Abstract][Full Text] [Related]
15. Vanadate trapping of nucleotide at the ATP-binding sites of human multidrug resistance P-glycoprotein exposes different residues to the drug-binding site. Loo TW; Clarke DM Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3511-6. PubMed ID: 11891276 [TBL] [Abstract][Full Text] [Related]
16. Intramolecular and intermolecular fluorescence resonance energy transfer in fluorescent protein-tagged Na-K-Cl cotransporter (NKCC1): sensitivity to regulatory conformational change and cell volume. Pedersen M; Carmosino M; Forbush B J Biol Chem; 2008 Feb; 283(5):2663-74. PubMed ID: 18045874 [TBL] [Abstract][Full Text] [Related]
17. Self-interacting domains in the C terminus of a cation-Cl- cotransporter described for the first time. Simard CF; Brunet GM; Daigle ND; Montminy V; Caron L; Isenring P J Biol Chem; 2004 Sep; 279(39):40769-77. PubMed ID: 15280386 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the interaction of the stress kinase SPAK with the Na+-K+-2Cl- cotransporter in the nervous system: evidence for a scaffolding role of the kinase. Piechotta K; Garbarini N; England R; Delpire E J Biol Chem; 2003 Dec; 278(52):52848-56. PubMed ID: 14563843 [TBL] [Abstract][Full Text] [Related]
19. Structure and mechanism of the cation-chloride cotransporter NKCC1. Chew TA; Orlando BJ; Zhang J; Latorraca NR; Wang A; Hollingsworth SA; Chen DH; Dror RO; Liao M; Feng L Nature; 2019 Aug; 572(7770):488-492. PubMed ID: 31367042 [TBL] [Abstract][Full Text] [Related]
20. A single binding motif is required for SPAK activation of the Na-K-2Cl cotransporter. Gagnon KB; England R; Delpire E Cell Physiol Biochem; 2007; 20(1-4):131-42. PubMed ID: 17595523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]