These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24451462)

  • 1. Advanced technologies for the improvement of spray application techniques in spanish viticulture: an overview.
    Gil E; Arnó J; Llorens J; Sanz R; Llop J; Rosell-Polo JR; Gallart M; Escolà A
    Sensors (Basel); 2014 Jan; 14(1):691-708. PubMed ID: 24451462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of the air blast sprayer speed on the chemical distribution in vineyard.
    Celen IH; Arin S; Durgut MR
    Pak J Biol Sci; 2008 Jun; 11(11):1472-6. PubMed ID: 18817249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a terrestrial LIDAR sensor for drift detection in vineyard spraying.
    Gil E; Llorens J; Llop J; Fàbregas X; Gallart M
    Sensors (Basel); 2013 Jan; 13(1):516-34. PubMed ID: 23282583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field assessment of a newly-designed pneumatic spout to contain spray drift in vineyards: evaluation of canopy distribution and off-target losses.
    Grella M; Miranda-Fuentes A; Marucco P; Balsari P
    Pest Manag Sci; 2020 Dec; 76(12):4173-4191. PubMed ID: 32592438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kresoxim methyl deposition, drift and runoff in a vineyard catchment.
    Lefrancq M; Imfeld G; Payraudeau S; Millet M
    Sci Total Environ; 2013 Jan; 442():503-8. PubMed ID: 23201604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canopy spray application technology in specialty crops: a slowly evolving landscape.
    Warneke BW; Zhu H; Pscheidt JW; Nackley LL
    Pest Manag Sci; 2021 May; 77(5):2157-2164. PubMed ID: 33135282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision viticulture and advanced analytics. A short review.
    Santesteban LG
    Food Chem; 2019 May; 279():58-62. PubMed ID: 30611512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spray drift reduction techniques for vineyards in fragmented landscapes.
    Otto S; Loddo D; Baldoin C; Zanin G
    J Environ Manage; 2015 Oct; 162():290-8. PubMed ID: 26265598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snails as indicators of pesticide drift, deposit, transfer and effects in the vineyard.
    Druart C; Millet M; Scheifler R; Delhomme O; Raeppel C; de Vaufleury A
    Sci Total Environ; 2011 Sep; 409(20):4280-8. PubMed ID: 21784506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spray performance of flexible shield canopy opener and rotor wind integrated boom-sprayer application in soybean: effects on droplet deposition distribution.
    Yu S; Cui L; Cui H; Liu X; Liu J; Xin Z; Yuan J; Wang D
    Pest Manag Sci; 2024 Jul; 80(7):3334-3348. PubMed ID: 38380840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using an automatic resistivity profiler soil sensor on-the-go in precision viticulture.
    Rossi R; Pollice A; Diago MP; Oliveira M; Millan B; Bitella G; Amato M; Tardaguila J
    Sensors (Basel); 2013 Jan; 13(1):1121-36. PubMed ID: 23325171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods.
    Llorens J; Gil E; Llop J; Escolà A
    Sensors (Basel); 2011; 11(2):2177-94. PubMed ID: 22319405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spray drift as affected by meteorological conditions.
    Nuyttens D; Sonck B; de Schampheleire M; Steurbaut W; Baetens K; Verboven P; Nicolaï B; Ramon H
    Commun Agric Appl Biol Sci; 2005; 70(4):947-59. PubMed ID: 16628942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time particle monitoring of pesticide drift from an axial fan airblast orchard sprayer.
    Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E
    J Expo Sci Environ Epidemiol; 2019 Apr; 29(3):397-405. PubMed ID: 30425317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative efficiencies of experimental and conventional foliar sprayers and assessment of optimal LWA spray volumes in trellised wine grapes.
    Gil E; Salcedo R; Soler A; Ortega P; Llop J; Campos J; Oliva J
    Pest Manag Sci; 2021 May; 77(5):2462-2476. PubMed ID: 33442942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of liquid-volume and airflow rates on spray application quality and homogeneity in super-intensive olive tree canopies.
    Miranda-Fuentes A; Rodríguez-Lizana A; Gil E; Agüera-Vega J; Gil-Ribes JA
    Sci Total Environ; 2015 Dec; 537():250-9. PubMed ID: 26282759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VineSens: An Eco-Smart Decision-Support Viticulture System.
    Pérez-Expósito JP; Fernández-Caramés TM; Fraga-Lamas P; Castedo L
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28245619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers.
    Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E
    Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Management of Grape Powdery Mildew with an Intelligent Sprayer and Sulfur.
    Warneke BW; Nackley LL; Pscheidt JW
    Plant Dis; 2022 Jul; 106(7):1837-1844. PubMed ID: 35037477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper levels in buccal cells of vineyard workers engaged in various activities.
    Thompson T; Freestone D; Michalczyk AA; Ackland ML
    Ann Occup Hyg; 2012 Apr; 56(3):305-14. PubMed ID: 22234616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.