BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24451589)

  • 1. Probing chemical space with alkaloid-inspired libraries.
    McLeod MC; Singh G; Plampin JN; Rane D; Wang JL; Day VW; Aubé J
    Nat Chem; 2014 Feb; 6(2):133-40. PubMed ID: 24451589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, synthesis and decoration of molecular scaffolds for exploitation in the production of alkaloid-like libraries.
    Craven P; Aimon A; Dow M; Fleury-Bregeot N; Guilleux R; Morgentin R; Roche D; Kalliokoski T; Foster R; Marsden SP; Nelson A
    Bioorg Med Chem; 2015 Jun; 23(11):2629-35. PubMed ID: 25600406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffold Diversity Synthesis and Its Application in Probe and Drug Discovery.
    Garcia-Castro M; Zimmermann S; Sankar MG; Kumar K
    Angew Chem Int Ed Engl; 2016 Jun; 55(27):7586-605. PubMed ID: 27187638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emulating the logic of monoterpenoid alkaloid biogenesis to access a skeletally diverse chemical library.
    Liu S; Scotti JS; Kozmin SA
    J Org Chem; 2013 Sep; 78(17):8645-54. PubMed ID: 23937288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Tryptoline Ring-Distortion Strategy Leads to Complex and Diverse Biologically Active Molecules from the Indole Alkaloid Yohimbine.
    Paciaroni NG; Ratnayake R; Matthews JH; Norwood VM; Arnold AC; Dang LH; Luesch H; Huigens RW
    Chemistry; 2017 Mar; 23(18):4327-4335. PubMed ID: 27900785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel synthesis of natural product-like polyhydroxylated pyrrolidine and piperidine alkaloids.
    Chang YF; Guo CW; Chan TH; Pan YW; Tsou EL; Cheng WC
    Mol Divers; 2011 Feb; 15(1):203-14. PubMed ID: 20563842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Terpenoid Alkaloid-like Compound Library Based on the Humulene Skeleton.
    Kikuchi H; Nishimura T; Kwon E; Kawai J; Oshima Y
    Chemistry; 2016 Oct; 22(44):15819-15825. PubMed ID: 27624861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The First Enantioselective Total Synthesis of (-)-trans-Dihydronarciclasine.
    Varró G; Hegedűs L; Simon A; Balogh A; Grün A; Leveles I; Vértessy BG; Kádas I
    J Nat Prod; 2017 Jun; 80(6):1909-1917. PubMed ID: 28581297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Stereoselective Synthesis of a Compound Collection Based on the Bicyclic Scaffolds of Natural Products.
    Annamalai M; Hristeva S; Bielska M; Ortega R; Kumar K
    Molecules; 2017 May; 22(5):. PubMed ID: 28524077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biology-oriented synthesis: harnessing the power of evolution.
    van Hattum H; Waldmann H
    J Am Chem Soc; 2014 Aug; 136(34):11853-9. PubMed ID: 25074019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclopentitol as a scaffold for a natural product-like compound library for drug discovery.
    Padwal JD; Filippov DV; Narhe BD; Aertssen S; Beuving RJ; Benningshof JC; van der Marel GA; Overkleeft HS; van der Stelt M
    Bioorg Med Chem; 2015 Jun; 23(11):2650-5. PubMed ID: 25691210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fsp
    Hanby AR; Troelsen NS; Osberger TJ; Kidd SL; Mortensen KT; Spring DR
    Chem Commun (Camb); 2020 Feb; 56(15):2280-2283. PubMed ID: 31984987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer supported synthesis of a natural product-inspired oxepane library.
    Basu S; Waldmann H
    Bioorg Med Chem; 2014 Aug; 22(16):4430-44. PubMed ID: 24947480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principle and design of pseudo-natural products.
    Karageorgis G; Foley DJ; Laraia L; Waldmann H
    Nat Chem; 2020 Mar; 12(3):227-235. PubMed ID: 32015480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing a drug-like natural product library.
    Quinn RJ; Carroll AR; Pham NB; Baron P; Palframan ME; Suraweera L; Pierens GK; Muresan S
    J Nat Prod; 2008 Mar; 71(3):464-8. PubMed ID: 18257534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of a hexahydropyrrolo indole (HPI) compound library.
    Nickel S; Nickel P; Hellmert M; Ernst S; Jewell R; Pearce CA; Jones G; Hamza D; Kaiser M
    Bioorg Med Chem; 2015 Jun; 23(11):2636-45. PubMed ID: 25907365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a 3D-shaped, natural product like fragment library by fragmentation and diversification of natural products.
    Prescher H; Koch G; Schuhmann T; Ertl P; Bussenault A; Glick M; Dix I; Petersen F; Lizos DE
    Bioorg Med Chem; 2017 Feb; 25(3):921-925. PubMed ID: 28011199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Demonstration of the Biological Relevance of sp
    Foley DJ; Craven PGE; Collins PM; Doveston RG; Aimon A; Talon R; Churcher I; von Delft F; Marsden SP; Nelson A
    Chemistry; 2017 Oct; 23(60):15227-15232. PubMed ID: 28983993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of viridicatin alkaloid-like scaffolds into DNA-encoded chemical libraries.
    Fang X; Liao H; Fan X; Wang Y; Wang H; Zhang G; Fang W; Li Y; Li Y
    Org Biomol Chem; 2023 Mar; 21(10):2162-2166. PubMed ID: 36799438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of hexahydropyrrolo[2,1-a]isoquinoline compound libraries through a Pictet-Spengler cyclization/metal-catalyzed cross coupling/amidation sequence.
    Petersen R; Cohrt AE; Petersen MÅ; Wu P; Clausen MH; Nielsen TE
    Bioorg Med Chem; 2015 Jun; 23(11):2646-9. PubMed ID: 25703308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.