These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

13066 related articles for article (PubMed ID: 24451623)

  • 1. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.
    Stamatakis A
    Bioinformatics; 2014 May; 30(9):1312-3. PubMed ID: 24451623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference.
    Kozlov AM; Darriba D; Flouri T; Morel B; Stamatakis A
    Bioinformatics; 2019 Nov; 35(21):4453-4455. PubMed ID: 31070718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RAxML-Light: a tool for computing terabyte phylogenies.
    Stamatakis A; Aberer AJ; Goll C; Smith SA; Berger SA; Izquierdo-Carrasco F
    Bioinformatics; 2012 Aug; 28(15):2064-6. PubMed ID: 22628519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ExaML version 3: a tool for phylogenomic analyses on supercomputers.
    Kozlov AM; Aberer AJ; Stamatakis A
    Bioinformatics; 2015 Aug; 31(15):2577-9. PubMed ID: 25819675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.
    Stamatakis A
    Bioinformatics; 2006 Nov; 22(21):2688-90. PubMed ID: 16928733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees.
    Stamatakis A; Ludwig T; Meier H
    Bioinformatics; 2005 Feb; 21(4):456-63. PubMed ID: 15608047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using RAxML to Infer Phylogenies.
    Stamatakis A
    Curr Protoc Bioinformatics; 2015 Sep; 51():6.14.1-6.14.14. PubMed ID: 26334924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring parallel MPI fault tolerance mechanisms for phylogenetic inference with RAxML-NG.
    Hübner L; Kozlov AM; Hespe D; Sanders P; Stamatakis A
    Bioinformatics; 2021 Nov; 37(22):4056-4063. PubMed ID: 34037680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RAxML and FastTree: comparing two methods for large-scale maximum likelihood phylogeny estimation.
    Liu K; Linder CR; Warnow T
    PLoS One; 2011; 6(11):e27731. PubMed ID: 22132132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic analysis of protein sequence data using the Randomized Axelerated Maximum Likelihood (RAXML) Program.
    Rokas A
    Curr Protoc Mol Biol; 2011 Oct; Chapter 19():Unit19.11. PubMed ID: 21987055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid bootstrap algorithm for the RAxML Web servers.
    Stamatakis A; Hoover P; Rougemont J
    Syst Biol; 2008 Oct; 57(5):758-71. PubMed ID: 18853362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algorithms, data structures, and numerics for likelihood-based phylogenetic inference of huge trees.
    Izquierdo-Carrasco F; Smith SA; Stamatakis A
    BMC Bioinformatics; 2011 Dec; 12():470. PubMed ID: 22165866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of irreproducibility in maximum likelihood phylogenetic inference.
    Shen XX; Li Y; Hittinger CT; Chen XX; Rokas A
    Nat Commun; 2020 Nov; 11(1):6096. PubMed ID: 33257660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotyping-by-Sequencing in a Species Complex of Australian Hummock Grasses (Triodia): Methodological Insights and Phylogenetic Resolution.
    Anderson BM; Thiele KR; Krauss SL; Barrett MD
    PLoS One; 2017; 12(1):e0171053. PubMed ID: 28135342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.
    Fouquier J; Rideout JR; Bolyen E; Chase J; Shiffer A; McDonald D; Knight R; Caporaso JG; Kelley ST
    Microbiome; 2016 Feb; 4():11. PubMed ID: 26905735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms.
    Speiser DI; Pankey MS; Zaharoff AK; Battelle BA; Bracken-Grissom HD; Breinholt JW; Bybee SM; Cronin TW; Garm A; Lindgren AR; Patel NH; Porter ML; Protas ME; Rivera AS; Serb JM; Zigler KS; Crandall KA; Oakley TH
    BMC Bioinformatics; 2014 Nov; 15(1):350. PubMed ID: 25407802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DPRml: distributed phylogeny reconstruction by maximum likelihood.
    Keane TM; Naughton TJ; Travers SA; McInerney JO; McCormack GP
    Bioinformatics; 2005 Apr; 21(7):969-74. PubMed ID: 15513992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating Fast Maximum Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets.
    Zhou X; Shen XX; Hittinger CT; Rokas A
    Mol Biol Evol; 2018 Feb; 35(2):486-503. PubMed ID: 29177474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PUmPER: phylogenies updated perpetually.
    Izquierdo-Carrasco F; Cazes J; Smith SA; Stamatakis A
    Bioinformatics; 2014 May; 30(10):1476-7. PubMed ID: 24478338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the efficiency of searches for the maximum likelihood tree in a phylogenetic analysis of up to 150 nucleotide sequences.
    Morrison DA
    Syst Biol; 2007 Dec; 56(6):988-1010. PubMed ID: 18066931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 654.