These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 24451679)

  • 1. Phytoremediation of benzene, toluene, ethylbenzene and xylene contaminated air by D. deremensis and O. microdasys plants.
    Mosaddegh MH; Jafarian A; Ghasemi A; Mosaddegh A
    J Environ Health Sci Eng; 2014 Jan; 12(1):39. PubMed ID: 24451679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Health risk assessment of BTEX compounds (benzene, toluene, ethylbenzene and xylene) in different indoor air using Monte Carlo simulation in zahedan city, Iran.
    Kamani H; Baniasadi M; Abdipour H; Mohammadi L; Rayegannakhost S; Moein H; Azari A
    Heliyon; 2023 Sep; 9(9):e20294. PubMed ID: 37809514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictors of blood volatile organic compound levels in Gulf coast residents.
    Werder EJ; Gam KB; Engel LS; Kwok RK; Ekenga CC; Curry MD; Chambers DM; Blair A; Miller AK; Birnbaum LS; Sandler DP
    J Expo Sci Environ Epidemiol; 2018 Jun; 28(4):358-370. PubMed ID: 29288257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly sensitive and selective laser-based BTEX sensor for occupational and environmental monitoring.
    Mhanna M; Sy M; Arfaj A; Llamas J; Farooq A
    Appl Opt; 2024 Apr; 63(11):2892-2899. PubMed ID: 38856386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urban BTEX Spatiotemporal Exposure Assessment by Chemometric Expertise.
    Astel AM; Giorgini L; Mistaro A; Pellegrini I; Cozzutto S; Barbieri P
    Water Air Soil Pollut; 2013 Apr; 224(4):1503. PubMed ID: 23576825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BTEX sensing potential of elemental-doped graphene: a DFT study.
    Zhang H; Zhang R; Hu S; Yang K; Wang Q; Dong H; Ni Y; Feng W
    Phys Chem Chem Phys; 2023 Nov; 25(44):30708-30715. PubMed ID: 37934014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the removal difference in indoor particulate matter and volatile organic compounds through the application of plants.
    Hong SH; Hong J; Yu J; Lim Y
    Environ Health Toxicol; 2017; 32():e2017006. PubMed ID: 28231688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term impact of exposure to ambient air volatile organic compounds on daily clinic visits for urticaria in Kaohsiung, Taiwan.
    Tseng HW; Lu LY
    Asian Pac J Allergy Immunol; 2024 Apr; ():. PubMed ID: 38642326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volatile organic compounds and cancer risk assessment in an intensive care unit.
    Lakestani S
    Int J Biometeorol; 2024 Jul; ():. PubMed ID: 39023743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial analysis of volatile organic compounds using passive samplers in the Rubbertown industrial area of Louisville, Kentucky, USA.
    Mukerjee S; Smith LA; Thoma ED; Whitaker DA; Oliver KD; Duvall R; Cousett TA
    Atmos Pollut Res; 2020 Jun; 11(6):81-86. PubMed ID: 32699520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimethod Approach to Investigate the Factors Influencing High-Temperature Fuming of Bitumen.
    Deller Z; Grist S; Giustozzi F; Maniam S
    ACS Omega; 2024 Jan; 9(3):3217-3228. PubMed ID: 38284018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance comparison of MOF and other sorbent materials in removing key odorants emitted from pigpen slurry.
    Ahmed E; Deep A; Kwon EE; Brown RJ; Kim KH
    Sci Rep; 2016 Aug; 6():31283. PubMed ID: 27511827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment and application of the environment evaluation model for beneficiation plant.
    Liu H; Kang Q; Zhao K; Ke Y; Yu S
    Sci Rep; 2024 Jul; 14(1):16625. PubMed ID: 39025940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.
    Sriprapat W; Suksabye P; Areephak S; Klantup P; Waraha A; Sawattan A; Thiravetyan P
    Ecotoxicol Environ Saf; 2014 Apr; 102():147-51. PubMed ID: 24530730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation for the indoor environment: a state-of-the-art review.
    Matheson S; Fleck R; Irga PJ; Torpy FR
    Rev Environ Sci Biotechnol; 2023; 22(1):249-280. PubMed ID: 36873270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Indoor Plants in air Purification and Human Health in the Context of COVID-19 Pandemic: A Proposal for a Novel Line of Inquiry.
    El-Tanbouly R; Hassan Z; El-Messeiry S
    Front Mol Biosci; 2021; 8():709395. PubMed ID: 34277711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Air Pollution and Weather on Dry Eye.
    Mandell JT; Idarraga M; Kumar N; Galor A
    J Clin Med; 2020 Nov; 9(11):. PubMed ID: 33233863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of health risk and respiratory complaints on footwear craftsman exposed to Toluene vapour.
    Maryiantari ES; Keman S
    J Public Health Res; 2020 Jul; 9(2):1818. PubMed ID: 32728564
    [No Abstract]   [Full Text] [Related]  

  • 19. A novel method based on functionalized bimodal mesoporous silica nanoparticles for efficient removal of lead aerosols pollution from air by solid-liquid gas-phase extraction.
    Zarandi AF; Shirkhanloo H; Paydar P
    J Environ Health Sci Eng; 2020 Jun; 18(1):177-188. PubMed ID: 32399230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships Between Short-Term Exposure to an Indoor Environment and Dry Eye (DE) Symptoms.
    Idarraga MA; Guerrero JS; Mosle SG; Miralles F; Galor A; Kumar N
    J Clin Med; 2020 May; 9(5):. PubMed ID: 32370240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.