These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24452709)

  • 1. The role of charge transfer in the energy level alignment at the pentacene/C60 interface.
    Beltrán J; Flores F; Ortega J
    Phys Chem Chem Phys; 2014 Mar; 16(9):4268-74. PubMed ID: 24452709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling energy level alignment at organic interfaces and density functional theory.
    Flores F; Ortega J; Vázquez H
    Phys Chem Chem Phys; 2009 Oct; 11(39):8658-75. PubMed ID: 20449007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charging energy and barrier height of pentacene on Au(111): a local-orbital hybrid-functional density functional theory approach.
    Pieczyrak B; Abad E; Flores F; Ortega J
    J Chem Phys; 2011 Aug; 135(8):084702. PubMed ID: 21895209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Barrier height formation in organic blends/metal interfaces: case of tetrathiafulvalene-tetracyanoquinodimethane/Au(111).
    Martínez JI; Abad E; Beltrán JI; Flores F; Ortega J
    J Chem Phys; 2013 Dec; 139(21):214706. PubMed ID: 24320393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy level alignment at metal/organic semiconductor interfaces: "pillow" effect, induced density of interface states, and charge neutrality level.
    Vázquez H; Dappe YJ; Ortega J; Flores F
    J Chem Phys; 2007 Apr; 126(14):144703. PubMed ID: 17444728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical Study of the Local and Charge-Transfer Excitations in Model Complexes of Pentacene-C60 Using Tuned Range-Separated Hybrid Functionals.
    Zhang CR; Sears JS; Yang B; Aziz SG; Coropceanu V; Brédas JL
    J Chem Theory Comput; 2014 Jun; 10(6):2379-88. PubMed ID: 26580758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of MoO3 interlayer on the energy level alignment of pentacene-C60 heterostructure.
    Zou Y; Mao H; Meng Q; Zhu D
    J Chem Phys; 2016 Feb; 144(8):084706. PubMed ID: 26931717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Barrier formation and charging energy for a variable nanogap organic molecular junction: a tip/C60/Au(111) configuration.
    Abad E; Martínez JI; Ortega J; Flores F
    J Phys Condens Matter; 2010 Aug; 22(30):304007. PubMed ID: 21399339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure of hybrid interfaces for polymer-based electronics.
    Fahlman M; Crispin A; Crispin X; Henze SK; de Jong MP; Osikowicz W; Tengstedt C; Salaneck WR
    J Phys Condens Matter; 2007 May; 19(18):183202. PubMed ID: 21690980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C6H6/Au(111): interface dipoles, band alignment, charging energy, and van der Waals interaction.
    Abad E; Dappe YJ; Martínez JI; Flores F; Ortega J
    J Chem Phys; 2011 Jan; 134(4):044701. PubMed ID: 21280779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio calculation of pentacene-PbSe hybrid interface for photovoltaic applications.
    Roy P; Nguyen TP
    Phys Chem Chem Phys; 2016 Jul; 18(27):18209-18. PubMed ID: 27332630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the Interface Dipole of Copper Phthalocyanine (CuPc)/C60: Theory and Experiment.
    Sai N; Gearba R; Dolocan A; Tritsch JR; Chan WL; Chelikowsky JR; Leung K; Zhu X
    J Phys Chem Lett; 2012 Aug; 3(16):2173-7. PubMed ID: 26295767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge Transfer and Orbital Level Alignment at Inorganic/Organic Interfaces: The Role of Dielectric Interlayers.
    Hollerer M; Lüftner D; Hurdax P; Ules T; Soubatch S; Tautz FS; Koller G; Puschnig P; Sterrer M; Ramsey MG
    ACS Nano; 2017 Jun; 11(6):6252-6260. PubMed ID: 28541656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting the Charge-Transfer States at Pentacene/C
    Fujita T; Noguchi Y; Hoshi T
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32560127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization Energies at Organic-Organic Interfaces: Impact on the Charge Separation Barrier at Donor-Acceptor Interfaces in Organic Solar Cells.
    Ryno SM; Fu YT; Risko C; Brédas JL
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15524-34. PubMed ID: 27244215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder.
    Zheng Z; Tummala NR; Fu YT; Coropceanu V; Brédas JL
    ACS Appl Mater Interfaces; 2017 May; 9(21):18095-18102. PubMed ID: 28481497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model.
    Zheng Z; Brédas JL; Coropceanu V
    J Phys Chem Lett; 2016 Jul; 7(13):2616-21. PubMed ID: 27338105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning gap states at organic-metal interfaces via quantum size effects.
    Lin MK; Nakayama Y; Chen CH; Wang CY; Jeng HT; Pi TW; Ishii H; Tang SJ
    Nat Commun; 2013; 4():2925. PubMed ID: 24326296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functional theoretical study of pentacene/noble metal interfaces with van der Waals corrections: vacuum level shifts and electronic structures.
    Toyoda K; Hamada I; Lee K; Yanagisawa S; Morikawa Y
    J Chem Phys; 2010 Apr; 132(13):134703. PubMed ID: 20387950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.
    Yu M; Doak P; Tamblyn I; Neaton JB
    J Phys Chem Lett; 2013 May; 4(10):1701-6. PubMed ID: 26282981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.