These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 24452749)

  • 1. Lab-on-a-chip technology: impacting non-invasive prenatal diagnostics (NIPD) through miniaturisation.
    Kantak C; Chang CP; Wong CC; Mahyuddin A; Choolani M; Rahman A
    Lab Chip; 2014 Mar; 14(5):841-54. PubMed ID: 24452749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances of Microfluidic Platform for Cell Based Non-Invasive Prenatal Diagnosis.
    Jou HJ; Lo PH; Ling PY
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive prenatal diagnosis using cell-free fetal DNA technology: applications and implications.
    Hall A; Bostanci A; Wright CF
    Public Health Genomics; 2010; 13(4):246-55. PubMed ID: 20395693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-enhanced transferrin receptor antibody-labelled microfluidic chip (FETAL-Chip) enables efficient enrichment of circulating nucleated red blood cells for non-invasive prenatal diagnosis.
    Zhang H; Yang Y; Li X; Shi Y; Hu B; An Y; Zhu Z; Hong G; Yang CJ
    Lab Chip; 2018 Sep; 18(18):2749-2756. PubMed ID: 30123896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive prenatal genetic testing: a study of public attitudes.
    Kelly SE; Farrimond HR
    Public Health Genomics; 2012; 15(2):73-81. PubMed ID: 22094262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel approaches to manipulating foetal cells in the maternal circulation for non-invasive prenatal diagnosis of the unborn child.
    Huang Z; Fong CY; Gauthaman K; Sukumar P; Choolani M; Bongso A
    J Cell Biochem; 2011 Jun; 112(6):1475-85. PubMed ID: 21503953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics.
    Foudeh AM; Fatanat Didar T; Veres T; Tabrizian M
    Lab Chip; 2012 Sep; 12(18):3249-66. PubMed ID: 22859057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lab-on-a-chip technologies for stem cell analysis.
    Ertl P; Sticker D; Charwat V; Kasper C; Lepperdinger G
    Trends Biotechnol; 2014 May; 32(5):245-53. PubMed ID: 24726257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCR microfluidic devices for DNA amplification.
    Zhang C; Xu J; Ma W; Zheng W
    Biotechnol Adv; 2006; 24(3):243-84. PubMed ID: 16326063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of cell-free fetal nucleic acids in maternal blood for non-invasive prenatal diagnosis.
    Wright CF; Burton H
    Hum Reprod Update; 2009; 15(1):139-51. PubMed ID: 18945714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Commercialization of microfluidic point-of-care diagnostic devices.
    Chin CD; Linder V; Sia SK
    Lab Chip; 2012 Jun; 12(12):2118-34. PubMed ID: 22344520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethical aspects arising from non-invasive fetal diagnosis.
    Newson AJ
    Semin Fetal Neonatal Med; 2008 Apr; 13(2):103-8. PubMed ID: 18243828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incremental cost of non-invasive prenatal diagnosis versus invasive prenatal diagnosis of fetal sex in England.
    Hill M; Taffinder S; Chitty LS; Morris S
    Prenat Diagn; 2011 Mar; 31(3):267-73. PubMed ID: 21207386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis.
    Schumacher S; Nestler J; Otto T; Wegener M; Ehrentreich-Förster E; Michel D; Wunderlich K; Palzer S; Sohn K; Weber A; Burgard M; Grzesiak A; Teichert A; Brandenburg A; Koger B; Albers J; Nebling E; Bier FF
    Lab Chip; 2012 Feb; 12(3):464-73. PubMed ID: 22038328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Devices for Forensic DNA Analysis: A Review.
    Bruijns B; van Asten A; Tiggelaar R; Gardeniers H
    Biosensors (Basel); 2016 Aug; 6(3):. PubMed ID: 27527231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput isolation of fetal nucleated red blood cells by multifunctional microsphere-assisted inertial microfluidics.
    Wang Z; Cheng L; Wei X; Cai B; Sun Y; Zhang Y; Liao L; Zhao XZ
    Biomed Microdevices; 2020 Oct; 22(4):75. PubMed ID: 33079273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in microfluidics for drug discovery.
    Lombardi D; Dittrich PS
    Expert Opin Drug Discov; 2010 Nov; 5(11):1081-94. PubMed ID: 22827746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.